15.2: Double Integrals over General Regions

All functions below are continuous on their domains.

Let D be a bounded region enclosed in a rectangular region R. We define

$$
F(x, y)= \begin{cases}f(x, y) & \text { if }(x, y) \text { is in } D \\ 0 & \text { if }(x, y) \text { is in } R \text { but not in } D .\end{cases}
$$

If F is integrable over R, then we say F is integrable over D and we define the double integral of f over D by

$$
\iint_{D} f(x, y) \mathrm{d} A=\iint_{R} F(x, y) \mathrm{d} A
$$

FACT: If $f(x, y) \geq 0$ and f is continuous on the region D then the volume V of the solid S that lies above D and under the graph of f, i.e.

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 0 \leq z \leq f(x, y),(x, y) \in D\right\},
$$

is

$$
V=\iint_{D} f(x, y) \mathrm{d} A
$$

EXAMPLE 1. Evaluate the integral

$$
\iint_{D} \sqrt{16-x^{2}-y^{2}} \mathrm{~d} A
$$

where $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 16\right\}$ by identifying it as a volume of a solid.

Properties of double integrals:

- If $D=D_{1} \cup D_{2}$, where D_{1} and D_{2} do not overlap except perhaps their boundaries then

$$
\iint_{D} f(x, y) \mathrm{d} A=\iint_{D_{1}} f(x, y) \mathrm{d} A+\iint_{D_{2}} f(x, y) \mathrm{d} A .
$$

- If α and β are real numbers then

$$
\iint_{D}(\alpha f(x, y)+\beta g(x, y)) \mathrm{d} A=\alpha \iint_{D} f(x, y) \mathrm{d} A+\beta \iint_{D} g(x, y) \mathrm{d} A .
$$

- If we integrate the constant function $f(x, y)=1$ over D, we get area of D :

$$
\iint_{D} 1 \mathrm{~d} A=A(D) .
$$

EXAMPLE 2. If $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 25\right\}$ then

$$
\iint_{D} \mathrm{~d} A=
$$

Computation of double integral:

A plain region of TYPE I:

$$
D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\} .
$$

THEOREM 3. If D is a region of type I such that $D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}$ then

$$
\iint_{D} f(x, y) \mathrm{d} A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) \mathrm{d} y \mathrm{~d} x .
$$

A plain region of TYPE II:

$$
D=\left\{(x, y) \mid c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\} .
$$

THEOREM 4. If D is a region of type II s.t. $D=$ $\left\{(x, y) \mid c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}$ then

$$
\iint_{D} f(x, y) \mathrm{d} A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) \mathrm{d} x \mathrm{~d} y .
$$

EXAMPLE 5. Evaluate $I=\iint_{D} 30 x^{2} y \mathrm{~d} A$, where D is the region bounded by the lines $x=2, y=x$ and the hyperbola $x y=1$ in two different ways (i.e. considering D as a type I and then as a type II region).

EXAMPLE 6. Find the volume of the solid bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $x=0, y=z, z=0$ in the first octant.

EXAMPLE 7. Evaluate the following iterated integral by reversing the order of integration:

$$
I=\int_{0}^{1} \int_{x^{2}}^{1} x^{3} \sin \left(y^{3}\right) \mathrm{d} y \mathrm{~d} x
$$

