15.7: Triple integrals in cylindrical coordinates

- Cylindrical coordinates:

$$
P(x, y, z) \in \mathbb{R}^{3}
$$

In the cylindrical coordinates P is represented by the ordered triple (r, θ, z), where r, θ are the polar coordinates of $P_{x y}$ and z is the directed distance from the $x y$-plane to P :

$$
x=\quad y=\quad z=
$$

where

$$
r^{2}=\quad \tan \theta=\quad z=z .
$$

REMARK 1. The cylindrical coordinates

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=z \\
& r \geq 0, \quad 0 \leq \theta \leq 2 \pi
\end{aligned}
$$

are useful in problems that involve symmetry about the z-axis.

(a) Cylindrical
https://i.stack.imgur.com/FgSBF.jpg
EXAMPLE 2. Find an equation in cylindrical coordinates for the cone

$$
z=\sqrt{x^{2}+y^{2}}
$$

THEOREM 3. Let $f(x, y, z)$ be a continuous function over a solid $E \subset \mathbb{R}^{3}$. Let E^{*} be its image in cylindrical coordinates. Then

$$
\iiint_{E} f(x, y, z) \mathrm{d} V=\iiint_{E^{*}} f(r \cos \theta, r \sin \theta, z) \mathrm{d} V^{*}
$$

where

$$
\mathrm{d} V^{*}=r \mathrm{~d} r \mathrm{~d} z \mathrm{~d} \theta
$$

EXAMPLE 4. The density at any point of the solid E,

$$
E=\left\{(x, y, z): x^{2}+y^{2} \leq 9,-1 \leq z \leq 4\right\}
$$

equals to its distance from the axis of E. Find the mass of E.

REMARK 5. If E is a solid region of type I, i.e.

$$
E=\left\{(x, y, z) \mid(x, y) \in D, \phi_{1}(x, y) \leq z \leq \phi_{2}(x, y)\right\}
$$

where D is the projection of E onto the $x y$-plane then, as we know,

$$
\iiint_{E} f(x, y, z) \mathrm{d} V=\iint_{D}\left[\int_{\phi_{1}(x, y)}^{\phi_{2}(x, y)} f(x, y, z) \mathrm{d} z\right] \mathrm{d} A
$$

Passing to cylindrical coordinates here we actually have to replace D by its image D^{*} in polar coordinates and $\mathrm{d} z \mathrm{~d} A$ by $r \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta$.

EXAMPLE 6. Find the volume of the solid E bounded by the surfaces

$$
y=x, \quad y=-x, \quad x^{2}+y^{2}=5 z, \quad z=7
$$

so that $y \geq 0$.

