16.3: The fundamental Theorem for Line Integrals

16.4: Green's Theorem

DEFINITION 1. A vector field \mathbf{F} is called a conservative vector field if it is the gradient of some scalar function f s.t $\mathbf{F}=\nabla f$. In this situation f is called a potential function for \mathbf{F}.

Recall Part 2 of the Fundamental Theorem of Calculus:

$$
\int_{a}^{b} F^{\prime}(x) \mathrm{d} x=F(b)-F(a),
$$

where F^{\prime} is continuous on $[a, b]$.

- The fundamental Theorem for Line Integrals: Let C be a smooth curve given by $\mathbf{r}(t), a \leq$ $t \leq b$. Let f be a differentiable function of two or three variables and ∇f is continuous on C. Then

$$
\int_{C} \nabla f \cdot \mathrm{~d} \mathbf{r}=f(\mathbf{r}(b))-f(\mathbf{r}(a)) .
$$

REMARK 2. If C is a closed curve then

COROLLARY 3. If F is a conservative vector field and C is a curve with initial point A and terminal point B then:

EXAMPLE 4. Find the work done by the gravitational field

$$
\mathbf{F}(x, y, z)=-\frac{G m M}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\langle x, y, z\rangle
$$

in moving a particle with mass m from the point $(1,2,2)$ to the point $(3,4,12)$ along a piecewise-smooth curve C.

Notations And Definitions:
DEFINITION 5. A piecewise-smooth curve is called a path.

- Types of curves:

simple not closed \mid not simple not closed \mid simple closed \mid not simple, closed

- Types of regions:
simply connected n not simply connected
- Convention: The positive orientation of a simple closed curve C refers to a single counterclockwise traversal of C. If C is given by $\mathbf{r}=x(t) \mathbf{i}+y(t) \mathbf{j}, a \leq t \leq b$, then the region D bounded by C is always on the left as the point $\mathbf{r}(t)$ traverses C.

- The positively oriented boundary curve of D is denoted by ∂D.
-GREEN's THEOREM: Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C. If $P(x, y)$ and $Q(x, y)$ have continuous partial derivatives on an open region that contains D, then

$$
\oint_{\partial D} P \mathrm{~d} x+Q \mathrm{~d} y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} A .
$$

EXAMPLE 6. Evaluate:

$$
I=\oint_{C} e^{x}(1-\cos y) \mathrm{d} x-e^{x}(1-\sin y) \mathrm{d} y
$$

where C is the boundary of the domain $D=\{(x, y): 0 \leq x \leq \pi, 0 \leq y \leq \sin x\}$.

EXAMPLE 7. Let C be a triangular curve consisting of the line segments from $(0,0)$ to $(5,0)$, from $(5,0)$ to $(0,5)$, and from $(0,5)$ to $(0,0)$. Evaluate the following integral:

$$
I_{1}=\oint_{C}\left(x^{2} y+\frac{1}{2} y^{2}\right) \mathrm{d} x+\left(x y+\frac{1}{3} x^{3}+3 x\right) \mathrm{d} y
$$

SUMMARY: Let $\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ be a vector field on an open simply connected domain D. Suppose that P and Q have continuous partial derivatives through D. Then the facts below are equivalent.

EXAMPLE 8. Determine whether or not the vector field is conservative:
(a) $\mathbf{F}(x, y)=\left\langle x^{2}+y^{2}, 2 x y\right\rangle$.
(b) $\mathbf{F}(x, y)=\left\langle x^{2}+3 y^{2}+2,3 x+y e^{y}\right\rangle$

EXAMPLE 9. Given $\mathbf{F}(x, y)=\sin y \mathbf{i}+(x \cos y+\sin y) \mathbf{j}$.
(a) Show that \mathbf{F} is conservative.
(b) Find a function f s.t. $\nabla f=\mathbf{F}$
(c) Find the work done by the force field \mathbf{F} in moving a particle from the point $(3,0)$ to the point $(0, \pi / 2)$.
(d) Evaluate $\oint_{C} \mathbf{F} \mathrm{~d} \mathbf{r}$ where C is an arbitrary path in \mathbb{R}^{2}.

EXAMPLE 10. Given

$$
\mathbf{F}=\left\langle 2 x y^{3}+z^{2}, 3 x^{2} y^{2}+2 y z, y^{2}+2 x z\right\rangle .
$$

Find a function f s.t. $\nabla f=\mathbf{F}$

