16.5: Curl and Divergence

Introduce the vector differential operator ∇ as

$$
\nabla=\mathbf{i} \frac{\partial}{\partial x}+\mathbf{j} \frac{\partial}{\partial y}+\mathbf{k} \frac{\partial}{\partial z} .
$$

If $\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}$ is a vector field on \mathbb{R}^{3} and the partial derivatives of P, Q, R all exist, then the curl of \mathbf{F} is the vector field on \mathbb{R}^{3} defined by

$$
\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right|
$$

EXAMPLE 1. Find the curl of the vector field

$$
\mathbf{F}(x, y, z)=\left\langle x y, x^{2}, y z\right\rangle .
$$

Question What is the curl of a two-dimensional vector field

$$
\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j} ?
$$

Answer:

CONCLUSION: Green's Theorem in vector form:

$$
\oint_{\partial D} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=
$$

THEOREM 2. If a function $f(x, y, z)$ has continuous partial derivatives of second order then

$$
\operatorname{curl}(\nabla f)=\mathbf{0}
$$

Proof:

COROLLARY 3. If \mathbf{F} is conservative, then $\operatorname{curl} \mathbf{F}=\mathbf{0}$.

The proof of the Theorem below requires Stokes' Theorem (Section 14.8).
THEOREM 4. If \mathbf{F} is a vector field defined on \mathbb{R}^{3} whose component functions have continuous partial derivatives and curl $\mathbf{F}=0$, then \mathbf{F} is a conservative vector field.

EXAMPLE 5. Let $\mathbf{F}(x, y, z)=\left\langle x^{9}, y^{9}, z^{9}\right\rangle$.
(a) Show that \mathbf{F} is conservative.
(b) Find a function f s.t. $\nabla f=\mathbf{F}$.
(c) Evaluate $\int_{(1,0,1)}^{(-1,-1,-1)} \mathbf{F} \cdot \mathrm{d} \mathbf{r}$.

If $\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}$ is a vector field on \mathbb{R}^{3} and the partial derivatives P_{x}, Q_{y}, R_{z} exist, then the divergence of \mathbf{F} is the scalar field on defined by

$$
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=
$$

EXAMPLE 6. Find the divergence of the vector field

$$
\mathbf{F}(x, y, z)=\left\langle\sin (x y z), x^{2}, y z\right\rangle .
$$

THEOREM 7. If the components of a vector field $\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}$ has continuous partial derivatives of second order then

$$
\operatorname{div} \operatorname{curl} \mathbf{F}=0 .
$$

Proof.

EXAMPLE 8. Is there a vector field \mathbf{G} on \mathbb{R}^{3} s.t. curl $G=\langle y z, x y z, z y\rangle$?

