16.6: Parametric surfaces and their areas

Consider a continuous vector valued function of two variables

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}, \quad (u,v) \in D.$$

Parametric surface:

$$S: x = x(u, v), y = y(u, v), z = z(u, v), (u, v) \in D.$$

In other words, the surface S is traces out by the position vector $\mathbf{r}(u, v)$ as (u, v) moves throughout the region D.

EXAMPLE 1. Determine the surface given by the parametric representation

 $\mathbf{r}(u,v) = \langle u, u \cos v, u \sin v \rangle, \quad 1 \le u \le 5, \quad 0 \le v \le 2\pi$

EXAMPLE 2. Give parametric or vector representations for each of the following surfaces:

(a) the cylinder: $x^2 + y^2 = 9$, $1 \le z \le 5$.

(b) the upper half-sphere: $z = \sqrt{100 - x^2 - y^2}$.

CONCLUSION: To parametrize surface we may use polar, cylindrical or spherical coordinates, or

- $z = f(x, y) \longrightarrow \mathbf{r}(x, y) = x\mathbf{i} + y\mathbf{j} + f(x, y)\mathbf{k}$
- $y = f(x, z) \longrightarrow \mathbf{r}(x, z) = x\mathbf{i} + f(x, z)\mathbf{j} + z\mathbf{k}$
- $x = f(y, z) \longrightarrow \mathbf{r}(y, z) = f(y, z)\mathbf{i} + y\mathbf{j} + z\mathbf{k}$

• Tangent planes:

PROBLEM: Find a normal vector to the tangent plane to a parametric surface S given by a vector function $\mathbf{r}(u, v)$ at a point P_0 with position vector $\mathbf{r}(u_0, v_0)$, i.e. $P_0(x(u_0, v_0), y(u_0, v_0), z(u_0, v_0))$

The normal vector

$$\mathbf{N} = \mathbf{N}(u, v) =$$

If a normal vector is not $\mathbf{0}$ then the surface S is called **smooth** (it has no "corner").

Special Case: a surface S given by a graph z = f(x, y). Then one can choose the following parametrization of S:

$$\mathbf{r}(x,y) =$$

and the then the normal vector is

$$\mathbf{N} =$$

EXAMPLE 3. Find the tangent plane to the surface with parametric equations $x = uv + 1, y = ue^v, z = ve^u$ at the point (1, 0, 0).

• Surface Area:

Consider a smooth surface S given by

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}, \quad (u,v) \in D,$$

then

$$\mathrm{d}S = |N(u, v)|\mathrm{d}u\mathrm{d}v =$$

and the **surface area**

$$A(S) = \iint_{S} dS = \iint_{D} |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA.$$

REMARK 4. Special Case: a surface S given by a graph z = f(x, y) we have

$$\mathbf{r}(x,y) = x\mathbf{i} + y\mathbf{j} + f(x,y)\mathbf{k}$$

and

$$\mathrm{d}S = |\mathbf{N}(x,y)| \,\mathrm{d}A =$$

EXAMPLE 5. Find the surface area of the surface

$$S: \quad x = uv, \quad y = u + v, \quad z = u - v, \qquad u^2 + v^2 \le 1.$$

EXAMPLE 6. Find the surface area of the part paraboloid $z = x^2 + y^2$ between two planes: z = 0 and z = 4.