16.6: Parametric surfaces and their areas

Consider a continuous vector valued function of two variables

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}, \quad(u, v) \in D
$$

Parametric surface:

$$
S: x=x(u, v), \quad y=y(u, v), \quad z=z(u, v), \quad(u, v) \in D .
$$

In other words, the surface S is traces out by the position vector $\mathbf{r}(u, v)$ as (u, v) moves throughout the region D.

EXAMPLE 1. Determine the surface given by the parametric representation

$$
\mathbf{r}(u, v)=\langle u, u \cos v, u \sin v\rangle, \quad 1 \leq u \leq 5, \quad 0 \leq v \leq 2 \pi
$$

EXAMPLE 2. Give parametric or vector representations for each of the following surfaces:
(a) the cylinder: $x^{2}+y^{2}=9, \quad 1 \leq z \leq 5$.
(b) the upper half-sphere: $z=\sqrt{100-x^{2}-y^{2}}$.

CONCLUSION: To parametrize surface we may use polar, cylindrical or spherical coordinates, or

- $z=f(x, y) \longrightarrow \mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+f(x, y) \mathbf{k}$
- $y=f(x, z) \longrightarrow \mathbf{r}(x, z)=x \mathbf{i}+f(x, z) \mathbf{j}+z \mathbf{k}$
- $x=f(y, z) \longrightarrow \mathbf{r}(y, z)=f(y, z) \mathbf{i}+y \mathbf{j}+z \mathbf{k}$

- Tangent planes:

PROBLEM: Find a normal vector to the tangent plane to a parametric surface S given by a vector function $\mathbf{r}(u, v)$ at a point P_{0} with position vector $\mathbf{r}\left(u_{0}, v_{0}\right)$, i.e. $P_{0}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right), z\left(u_{0}, v_{0}\right)\right)$

The normal vector

$$
\mathbf{N}=\mathbf{N}(u, v)=
$$

If a normal vector is not $\mathbf{0}$ then the surface S is called smooth (it has no " corner").

Special Case: a surface S given by a graph $z=f(x, y)$. Then one can choose the following parametrization of S :

$$
\mathbf{r}(x, y)=
$$

and the then the normal vector is

$$
\mathbf{N}=
$$

EXAMPLE 3. Find the tangent plane to the surface with parametric equations $x=u v+1, y=u e^{v}, z=v e^{u}$ at the point $(1,0,0)$.

- Surface Area:

Consider a smooth surface S given by

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}, \quad(u, v) \in D
$$

then

$$
\mathrm{d} S=|N(u, v)| \mathrm{d} u \mathrm{~d} v=
$$

and the surface area

$$
A(S)=\iint_{S} \mathrm{~d} S=\iint_{D}\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| \mathrm{d} A
$$

REMARK 4. Special Case: a surface S given by a graph $z=f(x, y)$ we have

$$
\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+f(x, y) \mathbf{k}
$$

and

$$
\mathrm{d} S=|\mathbf{N}(x, y)| \mathrm{d} A=
$$

EXAMPLE 5. Find the surface area of the surface

$$
S: \quad x=u v, \quad y=u+v, \quad z=u-v, \quad u^{2}+v^{2} \leq 1
$$

EXAMPLE 6. Find the surface area of the part paraboloid $z=x^{2}+y^{2}$ between two planes: $z=0$ and $z=4$.

