16.8: STOKES' THEOREM

Stokes' Theorem can be regarded as a 3-dimensional version of Green's Theorem:

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \iint_D \operatorname{curl} \mathbf{F} \cdot \mathbf{k} dA.$$

Let S be an oriented surface with unit normal vector $\hat{\mathbf{n}}$ and with the boundary curve C (which is a space curve).

The orientation on S induces the **positive orientation of the boundary curve** C: if you walk in the positive direction around C with your head pointing in the direction of $\hat{\mathbf{n}}$, then the surface will always be on your left.

The positively oriented boundary curve of an oriented surface S is often written as ∂S .

Stokes' Theorem: Let S be an oriented piece-wise-smooth surface that is bounded by a simple, closed, piecewise smooth boundary curve C with positive orientation. Let \mathbf{F} be a vector field whose components have continuous partial derivatives on an open region in \mathbb{R}^3 that contains S. Then

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S},$$

or

$$\iint_{S} \operatorname{curl} \mathbf{F} \cdot \hat{\mathbf{n}} \, \mathrm{d}S = \oint_{\partial S} \mathbf{F} \cdot \, \mathrm{d}\mathbf{r}.$$

EXAMPLE 1. Find the work performed by the forced field $\mathbf{F}(x,y,z) = \langle 3x^8, 4xy^3, y^2x \rangle$ on a particle that traverses the curve C in the plane z=y consisting of 4 line segments from (0,0,0) to (1,0,0), from (1,0,0) to (1,3,3), from (1,3,3) to (0,3,3), and from (0,3,3) to (0,0,0).

EXAMPLE 2. Verify Stokes' Theorem $\iint_S \operatorname{curl} \vec{F} \cdot d\vec{S} = \int_{\partial S} \vec{F} \cdot d\vec{r}$ for the vector field $\vec{F} = \langle 3y, 4z, -6x \rangle$ and the paraboloid $z = 9 - x^2 - y^2$ that lies above the plane z = -7 and oriented upward. Be sure to check and explain the orientations.

Solution: Use the following steps:

ullet Parametrize the boundary circle ∂S and compute the line integral.

• Parametrize the surface of the paraboloid and compute the surface integral:

THEOREM 3. If **F** is a vector field defined on \mathbb{R}^3 whose component functions have continuous partial derivatives and curl **F** = **0**, then **F** is a conservative vector field.

SUMMARY: Let $\mathbf{F}(x,y,z) = P(x,y,z)\mathbf{i} + Q(x,y,z)\mathbf{j} + R(x,y,z)\mathbf{k}$ be a continuous vector field in \mathbb{R}^3 .

There exists f s.t. $\nabla f = \mathbf{F}$

 $\int_{A\widecheck{B}} \mathbf{F} \cdot \, \mathrm{d}\mathbf{r}$ is independent of path

 \mathbf{F} is conservative in \mathbb{R}^3

 ${\rm curl} {\bf F} = {\bf 0}$

 $\int_C \mathbf{F} \cdot d\mathbf{r} = 0 \text{ for every closed curve } C$