12 Vectors and Geometry of Space

12.1: Three-dimensional Coordinate System

The three-dimensional coordinate system consists of the origin O and the coordinate axes: xr-axis,
y-axis, z-axis.The coordinate axes determine 3 coordinate planes: the zy-plane, the xz-plane and

yz-plane. The coordinate planes divide space into 8 parts, called octants.
Representation of point P(a, b, ¢) and its projections on the coordinate planes: Y\M‘L
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EXAMPLE 1. Describe in words the regions of R® represented by the following equation:

(a) z=0
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Note that in R? the graph of the equation involving x and y is a curve. In R? an equation in z, Y, z
represents a surface.(It does not mean that we can’t graph curves in R?))

EXAMPLE 2. Sketch the graph of x> +y*> —1 =0 in R?,R>.
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a given plane curve.
An equation that contains only two of the variables x,y, 2z represents a cylindrical surface in R3.
How to graph cylindrical surface:

1. graph the equation in the coordinate plane of the two wvariables that appear in the given
equation;

2. translate that graph parallel to the axis of the missing variable.

EXAMPLE 3. Sketch the graph of (z + 2)> 2— 4)? =1 in R3




EXAMPLE 4. Sketch the graph of y = x? in R3
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EXAMPLE 5. Let S be the graph of % + 2% — 10z + 21 = 0 in R>.

(a) Describe S. (q < L):‘ = o+ 2ab + bz
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(b) The intersection of S with the xz- plane is
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(c) The intersection of S with the yz- plane is__ <} W9 a&ms (O u '7) A‘A—(_o_’a_l;)_

(d) The intersection of S with the xy- plane ismm,
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e Distance formula in R?: The distance between the points P(x1, 41, 21) and Q(x2,y2, z2) is

|PQ| = \/(z2 — =1)2 + (y2 —11)% + (22 — 21)2%.
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EXAMPLE 6. Show that the equation x*+y* + 2% —|—2r 1:;—}—844— 17 = 0 represents a sphere, and finc
its center and radius.
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In general, completing the squares in
4yt + 24+ G+ Hy+ 12+ J=0
produces an equation of the form

(x—a)+(y—0)>+(z—¢c)’ =k

e I[f k£ > 0 then the graph O% this equation is (] C.Q.ﬂ"‘ll‘(d‘
ok (q.b, &) and wilh roady
e If £ =0, then the ;:Era'ph is % % us Jw. A ( o, b, C}'

e If k<0 then® -
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Regions in R?

EXAMPLE 7. Describe the set of all points in R® whose coordinates satisfy the following inequality:
x? +y? < 16

o surface Civcullos
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EXAMPLE 8. Describe the following region:{(z,y, 2)|9 < 2 + y* + 2?2 < 16}
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