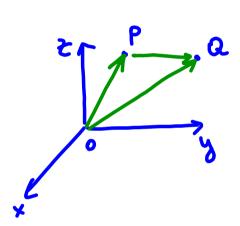
12.2 & 12.3: Vectors and the Dot Product

DEFINITION 1. A 3-dimensional vector is an ordered triple $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$

Given the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$, the vector **a** with representation \overrightarrow{PQ} is

$$\overrightarrow{PQ} = \mathbf{a} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle = \overrightarrow{0Q} - \overrightarrow{0P}$$

The representation of the vector that starts at the point O(0,0,0) and ends at the point $P(x_1,y_1,z_1)$ is called the **position** vector of the point P.



point P >> position vector of

$$\vec{OP} + \vec{PQ} = \vec{OQ}$$

 $\vec{PQ} = \vec{OQ} - \vec{OP}$

EXAMPLE 2. Find the vector represented by the directed line segment with the initial point A(1,2,3) and terminal point B(3,2,-1). What is the position vector of the point A?

$$\overrightarrow{OA} = \overline{\langle 1, 2, 3 \rangle}$$
 $\overrightarrow{OB} = \langle 3, 2, -1 \rangle$
 $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{BA} = \langle 3-1, 2-2, -1-3 \rangle = \overline{\langle 2, 0, -4 \rangle}$

Title: Jan 18-12:16 AM (2 of 13)

Vector Arithmetic: Let $a = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$

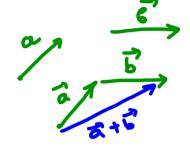
• Scalar Multiplication: $\alpha \mathbf{a} = \langle \alpha a_1, \alpha a_2, \alpha a_3 \rangle, \ \alpha \in \mathbb{R}.$

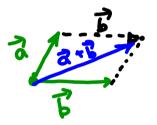
• Addition: $\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$

|d|>|

TRIANGLE LAW

PARALLELOGRAM LAW





Two vectors **a** and **b** are parallel if one is a scalar multiple of the other, i.e. there exists
$$\alpha \in \mathbb{R}$$
 s.t. $\mathbf{b} = \alpha \mathbf{a}$. Equivalently:

ratently:

$$a \parallel b \Leftrightarrow \vec{b} = d\vec{a} \quad \text{for some } d \in \mathbb{R}$$

Rewrite in coordinates
$$\vec{a} = \langle a_1, a_2, a_3 \rangle$$

$$\vec{b} = \langle b_1, b_2, b_3 \rangle$$

$$\vec{a} \parallel \vec{b} = \langle b_1, b_2, b_3 \rangle$$

$$(=) \langle b_1, b_2, b_3 \rangle = \langle \alpha \alpha_1, \alpha \alpha_2, \alpha \alpha_3 \rangle$$

$$(=) \langle b_1, b_2, b_3 \rangle = \langle \alpha \alpha_1, \alpha \alpha_2, \alpha \alpha_3 \rangle$$

$$(=) \langle b_1, b_2, b_3 \rangle = \langle \alpha \alpha_1, \alpha \alpha_2, \alpha \alpha_3 \rangle$$

$$(=) \langle b_1 = \alpha \alpha_1, \alpha \alpha_2, \alpha \alpha_3 \rangle$$

$$(=) \langle b_1 = \alpha \alpha_1, \alpha \alpha_2, \alpha \alpha_3, \alpha \alpha_3, \alpha \alpha_4, \alpha \alpha_5, \alpha \alpha$$

$$\langle 1, 2, 3 \rangle \parallel \langle \frac{1}{3}, \frac{2}{3}, 1 \rangle$$
, because $\frac{1}{3} = \frac{2}{3} = \frac{1}{3}$

$$\langle 1, 2, 37 | X \langle \frac{1}{5}, \frac{2}{5}, -\frac{3}{5} \rangle$$

 $\langle 0, 1, 27 | X \langle 1, 0, 27 \rangle$

Title: Jan 18-12:17 AM (4 of 13)

The magnitude or length of $a = \langle a_1, a_2, a_3 \rangle$:

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}.$$

Zero vector: $\mathbf{0} = \langle 0, 0, 0 \rangle, |\vec{0}| = 0.$

Note that $|\mathbf{a}| = 0 \Leftrightarrow \mathbf{a} = \mathbf{0}$.

 $\hat{\mathbf{a}} = \frac{\mathbf{a}}{|\mathbf{a}|}$ The process of multiplying a vectoe \mathbf{a} by Unit vector in the same direction as a:

the reciprocal of its length to obtain a unit vector with the same direction is called **normalizing a**.

Note that in \mathbb{R}^2 a nonzero vector **a** can be determined by its length and the angle from the positive x-axis:

$$|\hat{\alpha}| = \left|\frac{\vec{\alpha}}{|\vec{\alpha}|}\right| = \left|\frac{1}{|\vec{\alpha}|} \cdot \vec{\alpha}\right| = \frac{1}{|\vec{\alpha}|} \cdot |\vec{\alpha}| = 1$$

In \mathbb{R}^2 and \mathbb{R}^3 a vector can be determined by its length and a vector in the same direction:

$$\mathbf{a} = |\mathbf{a}| \, \hat{\mathbf{a}},$$

i.e. a is equal to its length times a unit vector in the same direction.

Title: Jan 18-12:17 AM (5 of 13)

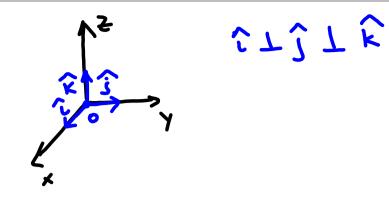
EXAMPLE 3. Find the components of a vector \mathbf{a} of length $\sqrt{5}$ that extends along the line through the points M(2,5,0) and N(0,0,4).

$$\pm \hat{\alpha} = \pm \frac{|\vec{MN}|}{|\vec{MN}|} = \pm \frac{\langle -2, -5, 4 \rangle}{|(-2)^2 + (-5)^2 + 4^2} = \pm \frac{\langle -2, -5, 4 \rangle}{3\sqrt{5}}$$

Title: Jan 18-12:18 AM (6 of 13)

Standard Basis Vectors:

$$\mathbf{i} = \langle 1, 0, 0 \rangle$$
 $\mathbf{j} = \langle 0, 1, 0 \rangle$
 $\mathbf{k} = \langle 0, 0, 1 \rangle$
Note that $|\mathbf{i}| = |\mathbf{j}| = |\mathbf{k}| = 1$.
We have:



$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle = \langle a_1, o_1 o_7 + \langle o_1 o_7 a_2, o_7 + \langle o_1 o_7 a_3 \rangle$$

$$= a_1 \langle 1, o_1 o_7 + a_2 \langle o_7 | 1, o_7 \rangle + a_3 \langle o_1 o_1 | 1 \rangle$$

$$= a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$

Title: Jan 18-12:18 AM (7 of 13)

EXAMPLE 4. Given $\mathbf{a} = \langle 1, 0, -3 \rangle$ and $\mathbf{b} = \langle 3, 1, 2 \rangle$. Find

(a)
$$|b-a| = |\langle 3, 1, 27 - \langle 1, 0, -3 \rangle| = |\langle 3-1, 1-0, 2-(-3) \rangle|$$

= $|\langle 2, 1, 5 \rangle| = |\langle 2^2 + 1^2 + 5^2 \rangle = |\langle 3-1, 1-0, 2-(-3) \rangle|$

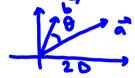
(b) a unit vector that has the same direction as \vec{b} .- \vec{c}

$$\frac{1}{15^{2}-31} = \frac{\langle 2, 1, 5 \rangle}{\sqrt{30}} \cdot \frac{\sqrt{30}}{\sqrt{30}} = \frac{2\sqrt{30}}{30}, \frac{\sqrt{30}}{30}, \frac{5\sqrt{50}}{30} \rangle$$

$$= \frac{\sqrt{\sqrt{30}}}{15}, \frac{\sqrt{30}}{30}, \frac{\sqrt{30}}{50} \rangle$$

a. b is a scalar

 \mathbf{Dot} **Product** of two nonzero vectors \mathbf{a} and \mathbf{b} is the NUMBER:



a
$$\cdot$$
 b = $|\mathbf{a}| \cdot |\mathbf{b}| \cos \theta$,

where θ is the angle between **a** and **b**, $0 \le \theta \le \pi$.

If $\mathbf{a} = \mathbf{0}$ or $\mathbf{b} = \mathbf{0}$ then $\mathbf{a} \cdot \mathbf{b} = 0$.

Component Formula for dot product of $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$: $\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3. \quad (\mathbf{a})$

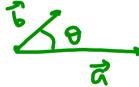
$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3.$$
 (2)

If θ is the *angle* between two nonzero vectors **a** and **b**, then

(1)

$$\gg$$

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| \cdot |\mathbf{b}|} \stackrel{\text{(2)}}{=} \frac{\mathbf{a} \cdot \mathbf{b}}{\sqrt{\mathbf{a}_1^2 + \mathbf{a}_2^2 + \mathbf{a}_3^2}} \cdot \sqrt{\mathbf{b}_1^2 + \mathbf{b}_2^2 + \mathbf{b}_3^2}$$



DEFINITION 5. Two nonzero vectors **a** and **b** are called **perpendicular** or orthogonal if the angle between them is $\theta = \pi/2$.

EXAMPLE 6. For two nonzero vectors a and b prove that

(b)
$$|\mathbf{a}| = \sqrt{\mathbf{a} \cdot \mathbf{a}}$$

EXAMPLE 7. For what value(s) of c are the vectors
$$c\mathbf{i} + 2\mathbf{j} + \mathbf{k}$$
 and $4\mathbf{i} + 3\mathbf{j} + c\mathbf{k}$ orthogonal? We know that $(\hat{c}\hat{i} + 2\hat{j} + \hat{k}) + (\hat{c}\hat{i} + 3\hat{j} + c\hat{k}) = 0$

$$4c + 2.3 + 1.c = 0$$

$$5c = -6$$

$$c = -\frac{6}{5}$$

EXAMPLE 8. The points A(6,-1,0), B(-3,1,2), C(2,4,5) form a triangle. Find angle at A.

$$\overrightarrow{AB} = \cancel{AB}, \overrightarrow{AC}$$

$$\overrightarrow{AB} = \langle -3 - 6, 1 - (-1), 2 - 0 \rangle$$

$$= \langle -9, 2, 2 \rangle$$

$$\overrightarrow{AC} = \langle 2 - 6, 4 - (-1), 5 - 0 \rangle$$

$$= \langle -4, 5, 5 \rangle$$

$$= \langle -4, 5, 5, 5$$