14.1: Functions of Several Variables

Consider the following formulas:

$$
\begin{array}{ll}
z=2-x-4 y & D=\mathbb{R}^{2} \\
z=x^{2}+y^{2} & D=\mathbb{R}^{2} \tag{2}\\
z=\sqrt{x^{2}+y^{2}} & D=\mathbb{R}^{2} \\
=\sqrt{1-x^{2}-y^{2}} & D=\{(x, y)\}
\end{array}
$$

$$
\left.1-x^{2}-y^{2} \geqslant 0\right\}
$$

$$
x^{2}+y^{2} \leq 1
$$

ordered pair of independent variables (x, y)

$\underset{\text { (output) }}{\text { dependent variable } z}$
(input)
subset
DEFINITION 1. Let $D \subseteq \mathbb{R}^{2}$. A function f of two variables is a rule that assigns to each ordered pair (x, y) in D a unique real number denoted by $f(x, y)$.

The set D is the domain of f and the range of f is the set of values that f takes on, that is $\{f(x, y) \mid(x, y) \in D\}$.

REMARK 2. Obviously, one can choose the independent variables arbitrary, for example, $x=$ $f(y, z)$.

- GRAPH of $f(x, y)$.

Recall that a graph of a function f of one variable is a curve C with equation $y=f(x)$.
DEFINITION 3. The graph of f with domain D is the set:

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=f(x, y) . \quad(x, y) \in D\right\} .
$$

The graph of a function f of two variables is a surface S in three dimensional space with equation $z=f(x, y)$.

EXAMPLE 4. Find the domain and sketch the graph of the functions (1)-(4). What is the range?
(1) $z=2-x-4 y$ plane
(2) $z=x^{2}+y^{2} \quad$ circular parabobid
$D=\mathbb{R}^{2}$

$$
D=\mathbb{R}^{2}
$$

range $=\mathbb{R}$

$$
\text { range }=[0, \infty)
$$

$(0,0,2)$
$(2,0,0)$
$\left(0, \frac{1}{2}, 0\right)$

Title : Feb 8-2:18 PM (Page 3 of 14)
(3) $z=\sqrt{x^{2}+y^{2}}$ part circulars cone
$D=\mathbb{R}^{2}$
range $=[0, \infty$)

$$
\begin{aligned}
& \text { (4) } z=\sqrt{1-x^{2}-y^{2}} \text { upper semi sphere radius t } \\
& D=\left\{(x, y) \mid 1-x^{2}-y^{2} \geqslant 0\right\} \text { centered origin. } \\
& \left.=\left\{(x, y) \mid x^{2}+y^{2} \leqslant 1\right\}\right\}{ }_{\text {at }}^{y} \\
& \text { range }=[0,1]
\end{aligned}
$$

EXAMPLE 5. Sketch the domain of each of the following: feenctions

Title : Feb 8-2:18 PM (Page 6 of 14)

- LEVEL (CONTOUR) CURVES method of visualizing functions is the method borrowed from mapmakers. It is a contour map on which points of constant elevation are joined to form level (or contour) curves.
$z=f(x, y)$
DEFINITION 6. The level (contour) curves of a function of two variables are the curves with equations

$$
f(x, y)=k
$$

where k is a constant in the range of f.
A level curve is the locus of all points at which f takes a given value k (it shows where the graph of f has height k).

- LEVEL (CONTOUR) CURVES method of visualizing functions is the method borrowed from mapmakers. It is a contour map on which points of constant elevation are joined to form level (or contour) curves.

DEFINITION 6. The level (contour) curves of a function of two variables are the curves with equations

$$
f(x, y)=k
$$

where k is a constant in the range of f.
A level curve is the locus of all points at which f takes a given value k (it shows where the graph of f has height k).

EXAMPLE 7. Sketch the level curves of the functions (2) and (3) for the values $k=0,1,2,3,4$:

$$
\begin{aligned}
& 4(2) z=x^{2}+y^{2} \\
& \text { circular paraboloid } \\
& x^{2}+y^{2}=k \quad(k \geqslant 0) \\
& k=0 \\
& \hline \begin{array}{l|l|c|}
k=1 & (0,0) & x^{2}+y^{2}=1 \\
k=2 & x^{2}+y^{2}=2 & 1 \\
k=3 & x^{2}+y^{2}=3 & \sqrt{2} \\
k=4 & x^{2}+y^{2}=4 & 2 \\
\end{array}
\end{aligned}
$$

(3) $z=\sqrt{x^{2}+y^{2}}$ upper

$$
\begin{aligned}
\sqrt{x^{2}+y^{2}} & =k \quad(k \geqslant 0) \\
x^{2}+y^{2} & =k^{2}
\end{aligned}
$$

$$
\downarrow
$$

$k=0$	$(0,0)$
$k=1$	$x^{2}+y^{2}=1$

$k=2 \quad x^{2}+y^{2}=4$
$k=3 \quad x^{2}+y^{2}=9$
$k=4 \quad x^{2}+y^{2}=16$
radius

Title : Feb 8-2:19 PM (Page 9 of 14)

- Functions of three variables.

DEFINITION 8. Let $D \subset \mathbb{R}^{3}$. A function f of three variables is a rule that assigns to each ordered pair (x, y, z) in D a unique real number denoted by $f(x, y, z)$.

Examples of functions of 3 variables:

$$
\begin{gathered}
f(x, y, z)=x^{2}+y^{2}+z^{2}, \\
u=x y z \\
T\left(s_{1}, s_{2}, s_{3}\right)=\ln s_{1}+12 s_{2}-s_{3}^{-5} .
\end{gathered}
$$

Emphasize that domains of functions of three variables are regions in three dimensional space.

EXAMPLE 9. Find the domain of the following function:

$$
f(x, y, z)=\frac{\ln \left(36-x^{2}-y^{2}-z^{2}\right)}{\sqrt{x^{2}+y^{2}+z^{2}-25}}
$$

$$
\begin{aligned}
& D(f)=\left\{(x, y, z): 36-x^{2}-y^{2}-z^{2}>0 \text { and } x^{2}+y^{2}+z^{2}-25>0\right\} \\
& \text { a concern two concentric }
\end{aligned}
$$

region between two concentric region spheres centered

$$
\begin{aligned}
& 36-x^{2}-y^{2}-z^{2}=0 \\
& x^{2}+y^{2}+z^{2}=36 \\
& x^{2}+y^{2}+z^{2}=25
\end{aligned}
$$

Test points $(0,0,0)$

$$
\begin{aligned}
& (0,5.5,0) V \\
& (7,0,0)
\end{aligned}
$$

Note that for functions of three variables it is impossible to visualize its graph. However we can examine them by their level surfaces:

$$
f(x, y, z)=k
$$

where k is a constant in the range of f. If the point (x, y, z) moves along a level surface, the value of $f(x, y, z)$ remains fixed.

Level surfaces: $f(x, y, z)=k$

$$
x^{2}+y^{2}-z=k
$$

$$
z+k=x^{2}+y^{2} \text { circular paraboloids }
$$

$$
\begin{aligned}
& k=0, \quad z=x^{2}+y^{2} \\
& k=1, z+1=x^{2}+y^{2} \\
& k=-1, \quad z-1=x^{2}+y^{2}
\end{aligned}
$$

REMARK 11. For any function there exist a unique level curve (surface) through given point!!!
\square
Title : Feb 8-2:18 PM (Page 14 of 14)

