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14.2: Limits and Continuity

Note: A more extensive study of these topics is usually given in advance calculus.

EXAMPLE 1. For the function f(x,y) = y? 5 find the limits at (0,0) along
-y
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The statement

lim  f(r,y)=1L

(#,y)=(x0,30)
is intended to convey the idea that the value of the function f(x,y) can be made as close as we
like to the number L by restricting the point (x,y) to be sufficiently close to (but different from)
the point (xg, y).
‘We note without proof that the standard properties of limits hold for limits along curves and
for general limits of functions of two variables, so that computations involving such limits can be

performed in usual way.

EXAMPLE 2. Find

lim  (4z’y —2014) = Llls 2 -0lq = - A00O2

(zy)—=(1,3)
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THEOREM 3.

. If( )lil(n )f(:c: y) =L then f(z,y) = L as (z,y) — (xo, y0) along any smooth curve.
T,y ) —xo,yo

o [fthe limit of f(x,y) fails to exist as (x,y) — (g, yy) along some smooth curve, or if f(x,y)
has different limits as (x,y) — (zy, yo) along two different smooth curves, then the limit of
[(x,y) does not exils as (x,y) — (xo, yo)-

EXAMPLE 4. For the function f(x,y)

See £x.1

= ﬁyy? discuss its limit as (x,y) — (0,0).
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DEFINITION 5. A function f(x,y) s continuous at the point (xg,yg) if

lim f(r;y)=f(ro;yo)~l

(z,y)—(xo.0)

Roughly speaking, a function will be continuous at a point if the graph does not have any
holes or breaks at that point.

All the standard functions that we know to be continuous are still continuous even if we are
plugging in more than one variable now. We just need to watch out for division by zero, square
roots of negative numbers, logarithms of zero or negative numbers, etc.

Recognizing Continuous functions:

: : . . byl > %
e A polynomial of function of (z,y) is contnmmfs.' l’ x° * 2 +9‘X3—
e A composition of continuous functions is continuous.

e A suin, difference, or product of continuous functions is continuous.

e A quotient of>(cont.i11uous functions is continuous, except where the denominator is zero.

—

EXAMPLE 6. Confirm that the following functions are all continuous everywhere:

—

Fa) =y V7 gloy) = I hay) = 1 ay) + sinady?)
' ' ' 1T+ a2 + 42’ ’
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EXAMPLE 7. Evaluate  lim = .2
(zy)—=(—1,1) T + Y G+ 1 -

"
Note Hat we caltulated +ha Lwt £¢1,1)

@'a. direct subshHhuhon, bew
CHLO is in Hw domain % %0‘17).
BTW , £ 15 continuouy o 1,0\

In 52_!\“'0&\, ;1" 15 continuown e.\n.\-\av\l\wrt except e(r(elg)'
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EXAMPLE 8. Find all points where the function f(x,y) = W—ly
Ty —

&(M‘n is Ag_PnLd o.vurywkua .gxc,.é‘. LS Pﬁﬂh Cx,y)
Sa.-\'fs‘hﬁ"‘j XY -\ =0,
0 pg) =hem Ry FA
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EXAMPLE 9. Evaluate lLim

(z,y)—(0,0) 2 + y?
(x.v): (Cen ®, v sind) ]

~N
po\a.,r Coordivakes

b z_l,_- = e Qrom) b sin®
(D=6 ¥ T (rens$ (£ sindy-

3 ; 9
= e\w Y’ o © Sn = v con ©5inD =0
¥ =0 ¢int ® vao —y—
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