14.4: Tangent Planes and Linear Approximation

Suppose that f(x,y) has continuous first partial derivatives and a surface S has equation z = f(x,y). Let $P(x_0,y_0,z_0)$ be a point on S, i.e. $z_0 = f(x_0,y_0)$.

Denote by C_1 the trace to f(x,y) for the plane $y = y_0$ and denote by C_2 the trace to f(x,y) for the plane $x = x_0$. let L_1 be the tangent line to the trace C_1 and let L_2 be the tangent line to the trace C_2 .

The tangent plane to the surface S (or to the graph of f(x,y)) at the point P is defined to be the plane that contains both the tangent lines L_1 and L_2 .

Title: Feb 6-8:57 AM (Page 1 of 12)

THEOREM 1. An equation of the tangent plane to the graph of the function z = f(x, y) at the point $P(x_0, y_0, f(x_0, y_0))$ is

$$z - f(x_0, y_0) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

CONCLUSION:A normal vector to the tangent plane to the surface z = f(x, y) at the point $P(x_0, y_0, f(x_0, y_0))$ is

$$\mathbf{n} = \mathbf{n}(x_0, y_0) = \langle \mathbf{f}_{\mathbf{x}}(\mathbf{x}_0, \mathbf{x}), \mathbf{f}_{\mathbf{y}}(\mathbf{x}_0, \mathbf{x}), -\mathbf{1} \rangle.$$

The line through the point $P(x_0, y_0, f(x_0, y_0))$ parallel to the vector **n** is perpendicular to the above tangent plane. This line is called **the normal line** to the surface z = f(x, y) at P. It follows that this normal line can be expressed parametrically as

Title: Feb 6-9:03 AM (Page 2 of 12)

Ex3 Find param. equation for the normal line to the Surface
$$Z = e^{48} \sin(4x)$$
 at the point $P(\frac{\pi}{8}, 0, 1)$.

Solution the direction vector of the normal line is parallel to the normal to the tangent plane at P .

So, $\vec{V} = \vec{n} \left(\frac{\pi}{8}, 0 \right) = \langle Z_x \left(\frac{\pi}{3}, 0 \right), Z_y \left(\frac{\pi}{8}, 0 \right), -1 \rangle$
 $\vec{Z}_x = 4e^{48} \cos(4x)$
 $\vec{V} = \langle 4e^{2} \cos(4x) \frac{\pi}{8}, 4e^{2} \sin(4x) \frac{\pi}{8}, 4e^{2} \sin($

Title: Feb 20-2:49 PM (Page 3 of 12)

EXAMPLE 2. Find an equation of the tangent plane to the graph of the function $z = x^2 + y^2 + 8$ at the point (1,1).

Tangent point

$$\Xi(1,1) = 1^2 + 1^2 + 8 = 10$$

 $P(1,1,10)$

Title: Feb 6-9:03 AM (Page 4 of 12)

Differentials. Given z = f(x, y). If Δx and Δy are given increments of x = a and y = b respectively, then the corresponding **increment** of z is

$$\Delta z(a,b) = f(a + \Delta x, b + \Delta y) - f(a,b). \tag{1}$$

Title: Feb 20-2:57 PM (Page 5 of 12)

The differentials dx and dy are independent variables. The differential dz (or the total differential) is defined by

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy.$$

$$z = f(x, y)$$

$$d\xi = f_x dx + f_y dy$$

FACT: $\Delta z \approx dz$.

This implies:

$$f(a + \Delta x, b + \Delta y) \approx f(a, b) + dz(a, b)$$

or

$$f(a + \Delta x, b + \Delta y) \approx f(a, b) + dz(a, b)$$

$$f(a + \Delta x, b + \Delta y) \approx f(a, b) + f_{x} \Delta x + f_{y} \Delta y$$
differential

EXAMPLE 4. Use differentials to find an approximate value for
$$\sqrt{1.03^2 + 1.98^3}$$
.

 $f(x,y) = \sqrt{x^2 + y^3}$
 $Q = 1, \quad b = 2$
 $1.03^2 + 1.98^3 = f(1.03, 1.98) = 1$
 $= f(1+0.03), \quad 2-0.02$
 $= f(1,2) + f_{x}(1,2)(0.03) + f_{y}(1,2)(-0.03)$

Note that
 $f(1,2) = \sqrt{1^2 + 2^3} = 3$

Title: Feb 6-9:05 AM (Page 7 of 12)

$$f_{x} = \frac{\partial}{\partial x} (\sqrt{x^{2} + y^{3}}) = \frac{x}{\sqrt{x^{2} + y^{3}}}$$

$$f_{x} (1,2) = \frac{1}{\sqrt{1^{2} + 2^{3}}} = \frac{1}{3}$$

$$f_{y} = \frac{\partial}{\partial y} (\sqrt{x^{2} + y^{3}}) = \frac{3y^{2}}{2\sqrt{x^{2} + y^{3}}}$$

$$f_{y} (1,2) = \frac{3 \cdot 2^{2}}{2 \cdot 3} = \frac{2}{2}$$

$$50,$$

$$\sqrt{1.03^{2} + 1.98^{3}} \approx 3 + \frac{1}{3} \cdot 0.03 + 2 \cdot (-0.02)$$

$$= 3 + 0.01 - 0.04 = 3 - 0.03 = 2.97$$

$$6y \text{ Calculator: } 2.97040$$

Title: Feb 20-3:10 PM (Page 8 of 12)

If u = f(x, y, z) then the differential du at the point (x, y, z) = (a, b, c) is defined in terms of the differentials dx, dy and dz of the independent variables:

$$du(a,b,c) = f_x(a,b,c)dx + f_y(a,b,c)dy + f_z(a,b,c)dz.$$

Title: Feb 6-9:05 AM (Page 9 of 12)

EXAMPLE 5. The dimensions of a closed rectangular box are measured as 80 cm, 60 cm and 50 cm, respectively, with a possible error of 0.2 cm in each dimension. Use differentials to estimate the maximum error in calculating the surface area of the box.

Surface area

$$S = 2(x + y + y + y)$$

Find $\Delta S (80, 60, 50)$

and $\Delta x = \Delta y = \Delta z = 0.2$

We know that $\Delta S (80, 60, 50) \approx dS(80, 60, 50)$

So, first find dS :

 $dS = S_x dx + S_y dy + S_z dz$
 $dS = (S_x + S_y + S_z) dx = (2(z+y) + 2(z+x) + 2(x+y)) dx = (2(z+y) + 2(z+x)) dx = (2(z+2x+2y)) dx = (2(z+2x+2x+2y)) dx = (2(z+2x+2x+2y)) dx = (2(z+2x+2x+2y)) dx = (2(z+2x+2x+2y)) dx = (2(z+2$

Title: Feb 6-9:05 AM (Page 10 of 12)

$$dS(80,60,50) = 4(80+60+50)0.2$$

$$= 4 \cdot 190 \cdot 0.2 = 8 \cdot 19 = 152 \text{ cm}^2$$

$$dS(80,60,50) \approx 152 \text{ cm}^2$$

A function f(x, y) is differentiable at (a, b) if its partial derivatives f_x and f_y exist and are continuous at (a, b).

For example, all polynomial and rational functions are differentiable on their natural domains.

Let a surface S be a graph of a differentiable function f. As we zoom in toward a point on the surface S, the surface looks more and more like a plane (its tangent plane) and we can approximate the function f by a linear function of two variables.

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b) =: L(x,y).$$

The function L(x, y) is called the **linearization** of f at (a, b) and the approximation

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

is called the linear approximation or the tangent plane approximation of f at (a, b).

If fx and fy are continuous, then f is differentiable

Title: Feb 6-9:06 AM (Page 12 of 12)