to the graph $z=f(x, y)$

14.4: Tangent Planes and Linear Approximation

Suppose that $f(x, y)$ has continuous first partial derivatives and a surface S has equation $z=$ $f(x, y)$. Let $P\left(x_{0}, y_{0}, z_{0}\right)$ be a point on S, i.e. $z_{0}=f\left(x_{0}, y_{0}\right)$.

Denote by C_{1} the trace to $f(x, y)$ for the plane $y=y_{0}$ and denote by C_{2} the trace to $f(x, y)$ for the plane $x=x_{0}$. let L_{1} be the tangent line to the trace C_{1} and let L_{2} be the tangent line to the trace C_{2}.

The tangent plane to the surface S (or to the graph of $f(x, y)$) at the point P is defined to be the plane that contains both the tangent lines L_{1} and L_{2}.

Title : Feb 6-8:57 AM (Page 1 of 12)

THEOREM 1. An equation of the tangent plane to the graph of the function $z=f(x, y)$ at the point $P\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ is

$$
z-f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

CONCLUSION:A normal vector to the tangent plane to the surface $z=f(x, y)$ at the point $P\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ is

$$
\mathrm{n}=\mathrm{n}\left(x_{0}, y_{0}\right)=\left\langle\boldsymbol{f}_{x}\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{\boldsymbol{x}}\right), f_{y}\left(x_{0}, y_{0}\right),-1\right\rangle
$$

The line through the point $P\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ parallel to the vector \mathbf{n} is perpendicular to the above tangent plane. This line is called the normal line to the surface $z=f(x, y)$ at P. It follows that this normal line can beoxpressed parametrically as

$$
\begin{array}{ll}
x=x_{0}+a d t & x=x_{0}+f_{x}\left(x_{0}, y_{0}\right) t \\
y=y_{0}+b f & y=y_{0}+f_{y}\left(x_{0}, y_{0}\right) t \\
z=z_{0}+c t & z=f\left(x_{0}, y_{0}\right)-t
\end{array}
$$

Ex Find param. equation for the normal line to the surface

$$
z=e^{4 y} \sin (4 x)
$$

at the point $P\left(\frac{\pi}{8}, 0,1\right)$.
Solution the direction vector of the normal line is parallel to the normal to the tangent plane at P.
So, $\vec{v}=\vec{n}\left(\frac{\pi}{8}, 0\right)=\left\langle z_{x}\left(\frac{\pi}{8}, 0\right), z_{y}\left(\frac{\pi}{8}, 0\right),-1\right\rangle$

$$
\begin{array}{ll}
z_{x}=4 e^{4 y} \cos (4 x) & \vec{v}=\left\langle 4 e^{0} \cos \left(4 \cdot \frac{\pi}{8}\right), 4 e^{0} \sin \left(4 \cdot \frac{\pi}{8}\right),-1\right\rangle \\
z_{y}=4 e^{4 y} \sin (4 x) & \vec{v}=\left\langle 4 \cos \frac{\pi}{2}, 4 \sin \frac{\pi}{2},-1\right\rangle=\langle 0,4,-1\rangle
\end{array}
$$

So, the normal lime is

$$
\begin{aligned}
& \text { the normal lime is } \\
& \begin{array}{l}
x=\frac{\pi}{8}+0 \cdot t \quad \text { or } \\
y=0+4 \cdot t \\
z=1+(-0 \cdot t
\end{array}
\end{aligned}
$$

EXAMPLE 2. Find an equation of the tangent plane to the graph of the function $z=x^{2}+y^{2}+8$ at the point $\left(\mathbf{x}_{0}, 1\right)_{0}$
x_{0}, y_{0}
Tangent point

$$
\begin{aligned}
& z(1,1)=1^{2}+1^{2}+8=10 \\
& P(1,1,10)
\end{aligned}
$$

normal vector to the plane

$$
\vec{n}(x, y)=\left\langle z_{x}, z_{y},-1\right\rangle=\left\langle 2 x, 2 y_{1},-1\right\rangle
$$

normal at P :

$$
\vec{n}(1,1)=\langle 2,2,-1\rangle
$$

Tangent plane at $(1,1)$:

$$
\begin{aligned}
& 2(x-1)+2(y-1)+(-1)(z-10)=0 \\
& 2 x+2 y-z+6=0
\end{aligned}
$$

Differentials. Given $z=f(x, y)$. If Δx and Δy are given increments of $x=a$ and $y=b$ respectively, then the corresponding increment of z is

$$
\begin{equation*}
\Delta z(a, b)=f(a+\Delta x, b+\Delta y)-f(a, b) \tag{1}
\end{equation*}
$$

Title : Feb 20-2:57 PM (Page 5 of 12)

The differentials $\mathrm{d} x$ and $\mathrm{d} y$ are independent variables. The differential $\mathrm{d} z$ (or the total differential) is defined by

$$
\mathrm{d} z=\frac{\partial z}{\partial x} \mathrm{~d} x+\frac{\partial z}{\partial y} \mathrm{~d} y . \quad \begin{aligned}
& z=f(\mathbf{x}, \boldsymbol{y}) \\
& d f=f_{\mathbf{x}} d \mathbf{x}+f_{\boldsymbol{y}} d \boldsymbol{y}
\end{aligned}
$$

FACT: $\Delta z \approx \mathrm{~d} z$.
This implies:

$$
f(a+\Delta x, b+\Delta y) \approx f(a, b)+\mathrm{d} z(a, b)
$$

or

$$
f(a+\Delta x, b+\Delta y) \approx f(a, b)+\underbrace{f_{x}^{(a, b)} \Delta x+f_{y \Delta y}^{(a, b)}}_{\text {differential }}
$$

EXAMPLE 4. Use differentials to find an approximate value for $\sqrt{1.03^{2}+1.98^{3}}$

$$
\begin{aligned}
& \begin{array}{l}
f(x, y)=\sqrt{x^{2}+y^{3}} \\
a=1, \quad b=2
\end{array} \\
& \Delta x=0.03, \Delta y=-0.02 \\
& \sqrt{1.03^{2}+1.98^{3}}=f(1.03,1.98)= \\
& =f(\underbrace{1}_{a}+\underbrace{0.03}_{\Delta x}, \underbrace{2}_{b}-\underbrace{0.02}_{\Delta y}) \approx \\
& \approx f(1,2)+f_{x}(1.2)(0.03)+f_{y}(1,2)(-0.02)
\end{aligned}
$$

Note that

$$
f(1,2)=\sqrt{1^{2}+2^{3}}=3
$$

$$
\begin{aligned}
& f_{x}=\frac{\partial}{\partial x}\left(\sqrt{x^{2}+y^{3}}\right)=\frac{x}{\sqrt{x^{2}+y^{3}}} \\
& f_{x}(1,2)=\frac{1}{\sqrt{1^{2}+z^{3}}}=\frac{1}{3} \\
& f_{y}=\frac{\partial}{\partial y}\left(\sqrt{x^{2}+y^{3}}\right)=\frac{3 y^{2}}{2 \sqrt{x^{2}+y^{3}}} \\
& f_{y}(1,2)=\frac{3.2^{2}}{2.3}=2 \\
& \text { So, } \\
& \sqrt{1.03^{2}+1.98^{3}} \approx 3+\frac{1}{3} \cdot 0.03+2 \cdot(-0.02) \\
& =3+0.01-0.04=3-0.03=2.97
\end{aligned}
$$

by Calculator: 2.97040

If $u=f(x, y, z)$ then the differential $\mathrm{d} u$ at the point $(x, y, z)=(a, b, c)$ is defined in terms of the differentials $\mathrm{d} x, \mathrm{~d} y$ and $\mathrm{d} z$ of the independent variables:

$$
\begin{aligned}
& \mathrm{d} u(a, b, c)=f_{x}(a, b, c) \mathrm{d} x+f_{y}(a, b, c) \mathrm{d} y+f_{z}(a, b, c) \mathrm{d} z \\
& \boldsymbol{\Delta u}(\mathbf{a}, \mathbf{b}, \mathbf{c}) \approx \operatorname{du}(\mathbf{a}, \mathbf{b}, \mathbf{c})
\end{aligned}
$$

EXAMPLE 5. The dimensions of a closed rectangular box are measured as $80 \mathrm{~cm}, 60 \mathrm{~cm}$ and 50 cm , respectively, with a possible error of 0.2 cm in each dimension. Use differentials to estimate the maximum error in calculating the surface area of the box.

Surface area

$$
S=2(x z+y z+x y)
$$

Find $\Delta S(80,60,50)$
and

$$
\begin{gathered}
\Delta x=\Delta y=\Delta z=0.2 \\
d x=d y=d z=0.2
\end{gathered}
$$

We know that $\Delta S(80,60,50) \approx d S(80,60,50)$
So, first find $d S$:

$$
\begin{aligned}
d S & =S_{x} d x+S_{y} d y+S_{z} d z \\
d S & =\left(S_{x}+S_{y}+S_{z}\right) d x= \\
& =(2(z+y)+2(z+x)+2(x+y)) d x= \\
& =2(2 z+2 x+2 y) d x=4(x+y+z) d x
\end{aligned}
$$

$$
\begin{aligned}
& d S(80,60,50)=4(80+60+50) 0.2 \\
& =4 \cdot 190 \cdot 0.2=8 \cdot 19=152 \mathrm{~cm}^{2} \\
& \Delta S(80,60,50) \approx 152 \mathrm{~cm}^{2}
\end{aligned}
$$

A function $f(x, y)$ is differentiable at (a, b) if its partial derivatives f_{x} and f_{y} exist and are continuous at (a, b).

For example, all polynomial and rational functions are differentiable on their natural domains.
Let a surface S be a graph of a differentiable function f. As we zoom in toward a point on the surface S, the surface looks more and more like a plane (its tangent plane) and we can approximate the function f by a linear function of two variables.

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)=: L(x, y)
$$

The function $L(x, y)$ is called the linearization of f at (a, b) and the approximation

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

is called the linear approximation or the tangent plane approximation of f at (a, b).
If f_{x} and f_{y} are continuous, then f is differentiable

