16.1: Vector Fields

A vector function

is an example of a function whose domain is a set of real numbers and whose range is a set of vectors in \mathbb{R}^3 :

$$\mathbf{r}(t): \mathbb{R} \to \mathbb{R}^3.$$

Consider a type of functions (vector fields) whose domain is \mathbb{R}^2 (or \mathbb{R}^3) and whose range is $1R^3 \rightarrow IR^3$

a set of vectors in
$$\mathbb{R}^2$$
 (or \mathbb{R}^3):
$$\mathbb{R} \to \mathbb{R}^2 \qquad \mathbb{R}^2 \to \mathbb{R}^2$$

$$\mathbb{R} \to \mathbb{R}^3 \qquad \mathbb{R}^2 \to \mathbb{R}^3$$

Vector field over \mathbb{R}^2 .

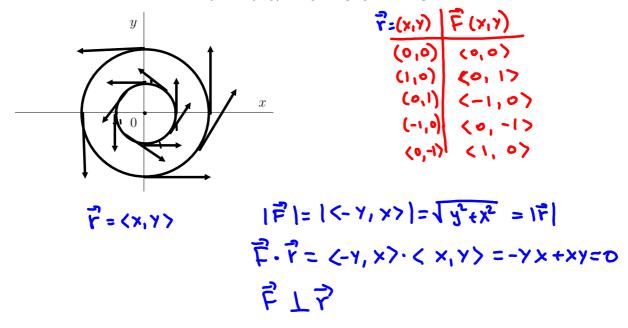
$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j} = \langle P(x,y), Q(x,y) \rangle$$

Vector field over \mathbb{R}^3 :

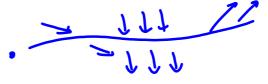
$$\mathbf{F}(x,y,z) = P(x,y,z)\mathbf{i} + Q(x,y,z)\mathbf{j} + R(x,y,z)\mathbf{k} = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle$$

A vector field in the plane (for instance), can be visualized as a collection of arrows with a given magnitude and direction, each attached to a point in the plane.

EXAMPLE 1. Describe the vector field $\mathbf{F}(x,y) = -y\mathbf{i} + x\mathbf{j}$ by sketching.



Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout space, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point.



EXAMPLE 2. Gravitational Field:

By Newton's Law of Gravitation the magnitude of the gravitational force between two objects with masses m and M is The gravitational force acting on the object at (x, y, z) is

$$|\mathbf{F}| = G \frac{mM}{r^2},$$

where $r = \sqrt{x^2 + y^2 + z^2}$ is the distance between the objects and G is the gravitational constant.

$$\vec{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \frac{\vec{F}}{|\vec{F}|}$$

$$\vec{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \frac{\vec{F}}{|\vec{F}|}$$

$$\vec{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \frac{\vec{F}}{|\vec{F}|}$$

$$\vec{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \frac{\vec{F}}{|\vec{F}|}$$

$$\vec{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \frac{\vec{F}}{|\vec{F}|}$$

$$\vec{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \frac{\vec{F}}{|\vec{F}|}$$

$$\vec{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \frac{\vec{F}}{|\vec{F}|}$$

$$\vec{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \frac{\vec{F}}{|\vec{F}|}$$

$$\vec{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \frac{\vec{F}}{|\vec{F}|}$$

$$\vec{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \frac{\vec{F}}{|\vec{F}|}$$

$$\vec{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \frac{\vec{F}}{|\vec{F}|}$$

$$\vec{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}| \frac{\vec{F}}{|\vec{F}|}$$

$$\vec{F} = |\vec{F}| \cdot \hat{F} = |\vec{F}$$

Function u = f(x, y, z) is also called a **scalar field**. Its gradient is also called **gradient vector** field:

$$\mathbf{F}(x,y,z) = \nabla f(x,y,z) = \langle \mathbf{f}_{\mathbf{x}}, \mathbf{f}_{\mathbf{y}}, \mathbf{f}_{\mathbf{z}} \rangle$$

EXAMPLE 3. Find the gradient vector field of f(x, y, z) = xyz.

$$\nabla f = \langle f_x, f_y, f_z \rangle = \langle y_z, x_z, x_y \rangle$$
.

DEFINITION 4. A vector field \mathbf{F} is called a conservative vector field if it is the gradient of some scalar function f s.t $\mathbf{F} = \nabla f$. In this situation f is called a **potential function** for \mathbf{F} .

$$\vec{F} = \langle P, Q, R \rangle = \langle f_x, f_y, f_z \rangle = \nabla f$$

For instance, the vector field $\mathbf{F}(x,y) = \langle \mathbf{r}, \mathbf{r} \rangle$ is a conservative vector field with a potential function f(x,y) = xy because

$$f_x = y$$
 $f_y = x$
 $\forall f = \langle y, x \rangle = F(x, y)$

REMARK 5. Not all vector fields are conservative, but such fields do arise frequently in Physics.

EXAMPLE 6. (see Example 2)Let

$$f(x,y,z) = \frac{GmM}{r},$$

where $r = \sqrt{x^2 + y^2 + z^2}$. Find its gradient and answer the questions:

- (a) Is the gravitational field conservative?
- **(b)** What is a potential function of the gravitational field?

$$\nabla f = \langle f_{x}, f_{y}, f_{z} \rangle = G_{m} M \langle -\frac{x}{r^{3}}, -\frac{y}{r^{3}}, -\frac{z}{r^{3}} \rangle$$

$$= gravitational field F_{6,y,z}$$

- (a) YES, because there exist a scalar field (function $f(x_1y_1z)$)

 such that $\nabla f = \vec{F}$ (b) $f(x_1y_1z) = \frac{GmM}{r}$