16.7: Surface Integrals

Problem: Find the mass of a thin sheet (say, of aluminum foil) which has a
shape of a surface S and the density (mass per unit area) at the point (x,y, z) is
olx, vy, z).
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If S is given by r(u,v) = z(u.v)i + y(u,v)j + z(u,v)k, (u,v) € D, then the
surface integral of f over the surface S is:
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St
EXAMPLE 1. Find the mass of a thin funnel in the shape of a cone z = /2% 4+ 1?
inside the cylinder ¥ +y* < 2z, if its density is a function p(z,y, z) = 22+ + 22
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e Oriented surfaces. We consider only two-sided surfaces.
Let a surface S has a tangent plane at every point (except at any boundary

points). There are two unit normal vectors at (z,y, z): n and —n.
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If it is possible to choose a unit normal vector n at every point (z,y.z) of a
surface S so that n varies continuously over S, then S is called oriented surface
and the given choice of n provides S with an orientation. There are two possible

orientations for any orientable surface:

Convention: For closed surfaces the positive orientation is outward.
for sphere
for  cyqUndex with +wes  Gdg
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e Surface integrals of vector fields.

DEFINITION 2. IfF is a continuous vector field defined on an oriented surface

S with unit normal vector n1, then the surface integral of F over S is

g .
ffF-dSrf/F-ﬂdS.
g s

This integral is also called the lux of F across S.
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Note that if S is given by r(u,v), (u,v) € D, then
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EXAMPLE 3. Find the fluz of the vector field
————
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