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Stokes’ Theorem can be regarded as a 3-dimensional version of Green’s Theorem: 4 ?(_%—O
ol

of L™
D “o‘r‘“ul‘*‘ =
j{F- dr:// (———) dA:// curlF - kdA.
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Let S be an oriented surface with unit normal vector n and with the boundary curve C' (which

16.8: STOKES’ THEOREM

is a space curve).
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The orientation on S induces the positive orientation of the boundary curve C: if you
walk in the positive direction around C with your head pointing in the direction of f, then the
surface will always be on your left.

The positively oriented boundary curve of an oriented surface S is often written as 95S.

Stokes’ Theorem: Let S be an oriented piece-wise-smooth surface that is bounded by a simple,
closed, piecewise smooth boundary curve C' with positive orientation. Let F' be a vector field whose

components have continuous partial derivatives on an open region in R3 that contains S. Then

jg F.dF= curlF - d’g,
c
or

// curlF - ndS = f F - dr.
S as
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EXAMPLE 1. Find the work performed by the forced field F(x,y,2) = (32% 4zy>, y*z) on a
particle that traverses the curve C' in the plancansiSting of 4 line segments from (0,0,0)
to (1,0,0), from (1,0,0) to (1,3,3), from (1,3,3) to (0,3,3), and from (0,3,3) to (0,0,0).
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EXAMPLE 2. Verify Stokes’ Theorem ffs curlF - 4§ = fasﬁ - dr for the wvector field F =
(3y,4z, —6z) and the paraboloid = = 9 — x* — y* that lies above the plane z = —7 and oriented

upward. Be sure to check and explain the orientations.

p ’ G847 = [fert 43
Solution: Use the following steps: S c= P) S
eParametrize the boundary circle S and compute the line integral.
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eParametrize the surface of

S:{("\‘h%)\ z=9-X-9,
v (ey)=4<xnY, A X* =477
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aboloid and compute the surface integral:
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THEOREM 3. If F is a vector field defined on R3 whose component functions have continuous

partial derivatives and curlF = 0, then F is a conservative vector field.

IMARY: Let F(z,y, z) = P(x,y, )i+ Q(z,y, 2)j + R(x,y, )k be a continuous vector field

E SR con C:l:\?:
P . o

There exists f s.t.
Wi=F / _ F . dr is independent of path
A

N 2

F is conservative

in R3

/7 N

curlF =0
¢F - dr = 0 for every closed curve C'
C
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