13.4: Polar Coordinates

REVIEW:
The connection between polar and Cartesian coordinates:

$$
\begin{array}{ll}
\cos \theta= & \sin \theta= \\
x= & y= \\
r^{2}= & \tan \theta=
\end{array}
$$

REMARK 1. In converting from the Cartesian to polar coordinates we must choose θ so that the point (r, θ) lies in the correct quadrant.

EXAMPLE 2. What curve is represented by the polar equation
(a) $r=12$
(b) $\theta=\frac{\pi}{3}$

EXAMPLE 3. Sketch the region in the Cartesian plane consisting of points whose polar coordinates satisfy the following conditions: $1 \leq r \leq 2, \quad \pi / 4 \leq \theta \leq \pi$.

EXAMPLE 4. Find a polar equation for the curve represented by the given Cartesian equation:
(a) $x^{2}+y^{2}=2 b y$
(b) $(x-a)^{2}+y^{2}=a^{2}$

