13.4: Polar Coordinates

REVIEW:

The connection between polar and Cartesian coordinates:

$$\cos \theta =$$
 $\sin \theta =$
 $x =$
 $y =$
 $tan \theta =$

REMARK 1. In converting from the Cartesian to polar coordinates we must choose θ so that the point (r, θ) lies in the correct quadrant.

EXAMPLE 2. What curve is represented by the polar equation

(a)
$$r = 12$$

(b)
$$\theta = \frac{\pi}{3}$$

EXAMPLE 3. Sketch the region in the Cartesian plane consisting of points whose polar coordinates satisfy the following conditions: $1 \le r \le 2$, $\pi/4 \le \theta \le \pi$.

EXAMPLE 4. Find a polar equation for the curve represented by the given Cartesian equation:

(a)
$$x^2 + y^2 = 2by$$

(b)
$$(x-a)^2 + y^2 = a^2$$