5 FUNCTIONS

5.1 Definition and Basic Properties

DEFINITION 1. Let X and Y be nonempty sets. A function f from the set X to the set Y is a correspondence that assigns to each element x in the set X one and only one element y in the set Y, which is denoted by $f(x)$.

We call X the domain of f and Y the codomain of f.

If $x \in X$ and $y \in Y$ are such that $y = f(x)$, then y is called the value of f at x, or the image of x under f. We may also say that f maps x to y.

Using diagram

DEFINITION 2. Two functions f and g are equal if they have the same domain and the same codomain and if $f(x) = g(x)$ for all x in domain.

DEFINITION 3. The graph of $f : X \to Y$ is the set

$$G_f = \{(x, y) \in X \times Y | y = f(x)\}.$$

- We can determine a function from its domain, codomain, and graph.
- We can describe a function by formula, by listing its values, or by words.

EXAMPLE 4. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 + 3$, $g : \mathbb{R} \to [0, \infty)$ be defined by $g(x) = x^2 + 3$, and $h : \{-1, 0, 1\} \to \mathbb{R}$ be defined by $h(x) = x^2 + 3$.

(a) Determine whether $f = g$.

(b) Determine whether $f = h$.

(c) Find the graphs of f, g, and h.
EXAMPLE 5. Decide if the following diagrams define functions from A to B.

EXAMPLE 6. Let $X = \{2, 4, 6\}$ and $Y = \{a, b, c, d\}$. Let f be a function defined by $f(2) = b, f(4) = a, f(6) = d$ and let g be a function from X to Y defined by its graph $G_g = \{(2, c), (4, c), (6, c)\}$ Find the following.

(a) The image of 2 under f.
(b) The image of 6 under g.
(c) The preimage of d under f.
(d) The preimage of c under g.
(e) The preimage of d under g.
(f) The codomain of g.
(g) G_f

Range (or Image) of a Function

DEFINITION 7. Let $f : X \rightarrow Y$ be a function. The range of f (also called the image of f) is the set

$$\{y \in Y | y = f(x) \text{ for some } x \in X\}.$$

We denote the range (or image) of the function f by $\text{ran}f$ (or $\text{Im}f$).

EXAMPLE 8. Let $f : X \rightarrow Y$ be a function. Using symbols complete the following

- $\text{ran}f \subseteq ___$
- $\forall y \in Y, y \in \text{ran}f \iff ___$
- $y \notin \text{ran}f \iff ___$
EXAMPLE 9. $f : \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x) = \cos x$. Find $\text{ran } f$.

EXAMPLE 10. Let $f : [\frac{1}{3}, \infty) \rightarrow \mathbb{R}$ be defined by $f(x) = \sqrt{3x - 1}$ and $S = \{y \in \mathbb{R} | y \geq 0\}$. Prove that $\text{ran } f = S$.

5.2 Composition of Functions

DEFINITION 11. Let A, B, and C be nonempty sets, and let $f : A \rightarrow B$, $g : B \rightarrow C$. We define a function

$$g \circ f : A \rightarrow C,$$

called the composition of f and g, by

$$(g \circ f)(a) =$$

Using diagram
EXAMPLE 12. Let \(A = \{1, 2, 3, 4\} \), \(B = \{a, b, c, d\} \), \(C = \{r, s, t, u, v\} \) and define the functions \(f : A \to B \), \(g : B \to C \) by their graphs:

\[
G_f = \{(1, b), (2, d), (3, a), (4, a)\}, \quad G_g = \{(a, u), (b, r), (c, r), (d, s)\}.
\]

Find \(g \circ f \). What about \(f \circ g \)?

EXAMPLE 13. Let \(f, g : \mathbb{R} \to \mathbb{R} \) be defined by \(f(x) = e^x \) and \(g(x) = x \sin x \). Find \(f \circ g \) and \(g \circ f \).
PROPOSITION 14. Let $f : A \to B$, $g : B \to C$, and $h : C \to D$. Then

$$(h \circ g) \circ f = h \circ (g \circ f),$$

i.e. composition of functions is associative.

Proof.

Section 5.3 Surjective (or onto) and Injective (or one-to-one) Functions

Surjective functions (“onto”)

DEFINITION 15. Let $f : X \to Y$ be a function. Then f is surjective (or a surjection) if the range of f coincides with its codomain, i.e.

$$\text{ran} f = Y.$$

Note: surjection is also called “onto”.

Proving surjection:

We know that for all $f : X \to Y$:

Thus, to show that $f : X \to Y$ is a surjection it is sufficient to prove that

In other words,

to prove that $f : X \to Y$ is a surjective function it is sufficient to show that

Question: How to disprove surjectivity?
EXAMPLE 16. Let \(f : \mathbb{R} \to \mathbb{R} \) and \(g : \mathbb{R} \to [0, \infty) \) defined by \(f(x) = g(x) = x^4 \). Determine whether the following are true

(a) \(\text{ran} \, f = \text{ran} \, g \)

(b) \(f = g \)

(c) \(f \) is surjective

(d) \(g \) is surjective

EXAMPLE 17. Prove that the function \(f : \mathbb{R} - \{2\} \to \mathbb{R} - \{3\} \) defined by \(f(x) = \frac{3x}{x - 2} \) is surjective.
Injective functions (“one to one”)

DEFINITION 18. Let \(f : X \to Y \) be a function. Then \(f \) is injective (or an injection) if whenever \(x_1, x_2 \in X \) and \(x_1 \neq x_2 \), we have \(f(x_1) \neq f(x_2) \).

In other words, \(f \) is injective if and only if the ranges of every two distinct points in the domain of \(f \) are distinct.

EXAMPLE 19. Given \(X = \{1, 2, 3\} \) and \(Y = \{3, 4, 5\} \). Determine whether the following functions are injective. Justify your answer.

(a) \(f : X \to Y \) defined by \(G_f = \{(1, 3), (2, 4), (3, 5)\} \)

(b) \(g : X \to Y \) defined by \(G_g = \{(1, 5), (2, 4), (3, 4)\} \)

Proving injection:

Let \(P(x_1, x_2) : x_1 \neq x_2 \) and \(Q(x_1, x_2) : f(x_1) \neq f(x_2) \).

Then by definition \(f \) is injective if ________________.

Using contrapositive, we have ________________.

In other words, to prove injection show that:

Question: How to disprove injectivity?

EXAMPLE 20. Prove or disprove injectivity of the following functions.

(a) \(f : \mathbb{R} \to \mathbb{R}, f(x) = \sqrt{x} \).
(b) \(f : \mathbb{R} \to \mathbb{R}, f(x) = x^4. \)

(c) \(f : \mathbb{Z} \to \mathbb{Z}, f(n) = \begin{cases}
 n/2 & \text{if } n \in \mathbb{E}, \\
 2n & \text{if } n \in \mathbb{O}.
\end{cases} \)

(d) \(f : \mathbb{Z} \to \mathbb{Z}, f(n) = \begin{cases}
 n & \text{if } n \in \mathbb{E}, \\
 5n & \text{if } n \in \mathbb{O}.
\end{cases} \)

Discussion Exercise.

- Must a strictly increasing or decreasing function be injective?
• Must an injective function be strictly increasing or decreasing?

EXAMPLE 21. Prove or disprove injectivity of the following functions. In each case, \(f : \mathbb{R} \to \mathbb{R} \).

(a) \(f(x) = 3x^5 + 5x^3 + 2x + \pi \).

(b) \(f(x) = x^{12} + x^8 - x^4 + 12 \).

Bijective functions

DEFINITION 22. A function that is both surjective and injective is called **bijective** (or bijection.)

\(f \) is not bijective \(\iff \)
PROPOSITION 23. A function f is bijective if and only if every point in $\text{codom } f$ has a unique preimage in the $\text{dom } f$.

EXAMPLE 24. Determine which of the following functions are bijective.

(a) $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$.
(b) $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$.

PROPOSITION 25. Let $f : A \to B$ and $g : B \to C$. Then

i. If f and g are surjections, then $g \circ f$ is also a surjection.

Proof.

ii. If f and g are injections, then $g \circ f$ is also an injection.

Proof.

COROLLARY 26. If f and g are bijections, then $g \circ f$ is also a bijection.
Identity Function

For a set X we define the identity function $I_X : X \rightarrow X$ by the rule $I_X(x) = x$ for all $x \in X$. In other words, the identity function maps every element to itself.

Though this seems like a rather trivial concept, it is useful and important.

Proposition 27. Let $f : X \rightarrow Y$. Then $f \circ I_X = f$ and $I_Y \circ f = f$.

5.4 Invertible Functions

Inverse Functions

Definition 28. Let $f : X \rightarrow Y$ be a function. We say that f is invertible if there is a function $g : Y \rightarrow X$ such that for all $x \in X$ and for all $y \in Y$,

$$y = f(x) \iff x = g(y).$$

We say that such a function g is an inverse function of f.

Question 1 What is the inverse of g?

Question 2 Are the functions in Example 6 invertible?

Remark 29. f is invertible if and only if its inverse is invertible.

Example 30. Show that the function $f : \mathbb{R} - \{2\} \rightarrow \mathbb{R} - \{3\}$ defined by $f(x) = \frac{3x}{x - 2}$ is invertible and find its inverse function. (Note that the given function is bijective.)
PROPOSITION 31. A function $f : X \to Y$ is invertible if and only if there exists a function $g : Y \to X$ such that $g \circ f = I_X$ and $f \circ g = I_Y$.

PROPOSITION 32. The inverse function is unique.

Proof.

Notation

When $f : X \to Y$ is invertible, the unique inverse function is denoted by f^{-1}, and $f^{-1} : Y \to X$.
REMARK 33. Finding the inverse of a bijective function is not always possible by algebraic manipulations. For example,

\[\text{if } f(x) = e^x \text{ then } f^{-1}(x) = \quad \]

The function \(f(x) = 3x^5 + 5x^3 + 2x + 220 \) is known to be bijective, but there is no way to find expression for its inverse.

THEOREM 34. A function \(f : X \to Y \) is invertible if and only if \(f \) is bijective.

COROLLARY 35. If a function \(f : X \to Y \) is bijective, so is \(f^{-1} \).