13. Reduction of order (section 3.4 continued)

1. Consider second order linear homogeneous equation with arbitrary coefficients:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 .
$$

Assume that we already know one of its particular solutions, $y_{1}(t)$. How to find another solution to get a fundamental set?

Step 1. Look for a second solution in the form

$$
y(t)=v(t) y_{1}(t)
$$

Step 2. Set $v^{\prime}=w$ to reduce order and solve obtained first order linear homogeneous ODE.
2. Note that the method can be also applied to linear nonhomogeneous ODE

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) .
$$

3. Use the method reduction of order to find a second particular solution of

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

if $y_{1}(t)=t$.

