14: Nonhomogeneous Equations. Method of Undetermined Coefficients (section 3.5)

1. If $y_{1}(t)$ and $y_{2}(t)$ are two solutions of a second-order nonhomogeneous linear ODE,

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \quad g(t) \not \equiv 0 .
$$

Then $y_{1}(t)-y_{2}(t)$ is a particular solution of the corresponding homogeneous equation,

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 .
$$

2. THEOREM: Solution of Nonhomogeneous Linear Equation

Let

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \quad g(t) \not \equiv 0
$$

be a second-order nonhomogeneous linear differential equation. If $y_{p}(t)$ is a particular solution of this equation and $y_{h}(t)$ is the general solution of the corresponding homogeneous equation,

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

then

$$
y(t)=y_{h}(t)+y_{p}(t)
$$

is the general solution of the nonhomogeneous equation.
3. To solve a nonhomogeneous linear ODE:

Step 1: Find a particular solution of a nonhomogeneous linear ODE.
Step 2: Find general solution of the corresponding homogeneous linear ODE.
Step 3: Add the results of Steps $1 \& 2$.
4. One solution of $y^{\prime \prime}-y=t$ is $y(t)=-t$, as you can verify. What is the general solution?
5. Consider

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g_{1}(t)+g_{2}(t) \tag{1}
\end{equation*}
$$

. If $y(t)=y_{p}(t)$ and $y(t)=Y_{p}(t)$ are particular solutions of

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g_{1}(t)
$$

and

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g_{2}(t)
$$

respectively, then $y(t)=y_{p}(t)+Y_{p}(t)$ is a particular solution of (1).

Method of Undetermined Coefficients

6. Consider a particular class of nonhomogeneous linear ODE with constant coefficients

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

where a, b, c are real constants and $g(t)$ involves linear combinations, sums and products of

$$
t^{m}, \quad e^{\alpha t}, \quad \sin (\beta t), \quad \cos (\beta t)
$$

7. The idea of the Method of Undetermined Coefficients: guess a particular solution $y_{p}(t)$ using a generalized form of $g(t)$. Then by substitution determine the coefficients for the generalized solution.
8. Find general solution:
(a) $y^{\prime \prime}-3 y^{\prime}+2 y=4 e^{3 t}$
(b) $y^{\prime \prime}-3 y^{\prime}+2 y=4 e^{t}$
(c) $y^{\prime \prime}+10 y^{\prime}+25 y=3 e^{-5 t}$
9. Multiplicity s of a given number $\alpha+i \beta$

If $g(t)=\left(B_{0} t^{n}+B_{1} t^{n-1}+\ldots+B_{n}\right) e^{\alpha t}, \quad \beta=0$, then

- α doesn't coincide with a root of characteristic polynomial $\Rightarrow s=0$.
- α coincides with a non repeated root of characteristic polynomial $\Rightarrow s=1$.
- α coincides with a repeated root of characteristic polynomial $\Rightarrow s=2$.

If $g(t)=\left(B_{0} t^{n}+B_{1} t^{n-1}+\ldots+B_{1} t^{n-1}+\ldots+B_{n}\right) e^{\alpha t} \cos (\beta t)$ or $g(t)=\left(B_{0} t^{n}+B_{1} t^{n-1}+\right.$ $\left.\left.\ldots+B_{n}\right) e^{\alpha t} \sin (\beta t)\right), \quad \beta \neq 0$, then

- $\alpha+i \beta$ doesn't coincide with a root of characteristic polynomial $\Rightarrow s=0$.
- $\alpha+i \beta$ coincides with a (complex) root of characteristic polynomial $\Rightarrow s=1$.

10. If $g(t)=\left(B_{0} t^{n}+B_{1} t^{n-1}+\ldots+B_{n}\right) e^{\alpha t} \cos (\beta t)$ or $\left.g(t)=\left(B_{0} t^{n}+B_{1} t^{n-1}+\ldots+B_{n}\right) e^{\alpha t} \sin (\beta t)\right)$ then we choose a particular solution in the form

$$
y_{p}(t)=t^{s}\left(A_{0} t^{n}+A_{1} t^{n-1}+\ldots+A_{n}\right) e^{\alpha t} \cos (\beta t)+t^{s}\left(D_{0} t^{n}+D_{1} t^{n-1}+\ldots+D_{n}\right) e^{\alpha t} \sin (\beta t)
$$

respectively.
11. Find general solution of

$$
y^{\prime \prime}+2 y^{\prime}+5 y=3 \sin 2 t
$$

12. Determine a suitable choice for y_{p} :

	$a y^{\prime \prime}+b y^{\prime}+c y=g(t)$	r_{1}, r_{2}	$\alpha+i \beta$	s	$y_{p}(t)$
1	$y^{\prime \prime}=e^{t}$				
2	$y^{\prime \prime}-4 y^{\prime}+4=e^{2 t}$				
3	$y^{\prime \prime}+2 y^{\prime}+10 y=6 \sin (3 t)$	$r_{1,2}=-1 \pm 3 i$			
4	$y^{\prime \prime}+2 y^{\prime}+10 y=6 e^{-t} \sin (3 t)$	$r_{1,2}=-1 \pm 3 i$			
5	$y^{\prime \prime}+2 y^{\prime}+10 y=\left(t^{3}-1\right) \sin (3 t)$	$r_{1,2}=-1 \pm 3 i$			
6	$y^{\prime \prime}+2 y^{\prime}+10 y=t^{2} e^{-t} \sin (3 t)$	$r_{1,2}=-1 \pm 3 i$			
7	$y^{\prime \prime}=2 t-2013$	$r_{1}=r_{2}=0$			

