14: Nonhomogeneous Equations. Method of Undetermined Coefficients (section 3.5)

1. If $y_1(t)$ and $y_2(t)$ are two solutions of a second-order nonhomogeneous linear ODE,

$$y'' + p(t)y' + q(t)y = g(t), \quad g(t) \not\equiv 0.$$

Then $y_1(t) - y_2(t)$ is a particular solution of the corresponding homogeneous equation,

$$y'' + p(t)y' + q(t)y = 0.$$

2. THEOREM: Solution of Nonhomogeneous Linear Equation

Let

$$y'' + p(t)y' + q(t)y = g(t), \quad g(t) \not\equiv 0$$

be a second-order nonhomogeneous linear differential equation. If $y_p(t)$ is a particular solution of this equation and $y_h(t)$ is the general solution of the corresponding homogeneous equation,

$$y'' + p(t)y' + q(t)y = 0,$$

then

$$y(t) = y_h(t) + y_p(t)$$

is the general solution of the nonhomogeneous equation.

- 3. To solve a nonhomogeneous linear ODE:
 - **Step 1:** Find a particular solution of a nonhomogeneous linear ODE.
 - **Step 2:** Find general solution of the corresponding homogeneous linear ODE.
 - Step 3: Add the results of Steps 1&2.
- 4. One solution of y'' y = t is y(t) = -t, as you can verify. What is the general solution?
- 5. Consider

$$y'' + p(t)y' + q(t)y = g_1(t) + g_2(t)$$
(1)

. If $y(t) = y_p(t)$ and $y(t) = Y_p(t)$ are particular solutions of

$$y'' + p(t)y' + q(t)y = g_1(t)$$

and

$$y'' + p(t)y' + q(t)y = g_2(t),$$

respectively, then $y(t) = y_p(t) + Y_p(t)$ is a particular solution of (1).

Method of Undetermined Coefficients

6. Consider a particular class of nonhomogeneous linear ODE with constant coefficients

$$ay'' + by' + cy = g(t),$$

where a, b, c are real constants and g(t) involves linear combinations, sums and products of

$$t^m$$
, $e^{\alpha t}$, $\sin(\beta t)$, $\cos(\beta t)$.

- 7. The idea of the Method of Undetermined Coefficients: guess a particular solution $y_p(t)$ using a generalized form of g(t). Then by substitution determine the coefficients for the generalized solution.
- 8. Find general solution:
 - (a) $y'' 3y' + 2y = 4e^{3t}$
 - (b) $y'' 3y' + 2y = 4e^t$
 - (c) $y'' + 10y' + 25y = 3e^{-5t}$
- 9. Multiplicity s of a given number $\alpha + i\beta$

If
$$g(t) = (B_0 t^n + B_1 t^{n-1} + \ldots + B_n) e^{\alpha t}$$
, $\beta = 0$, then

- α doesn't coincide with a root of characteristic polynomial $\Rightarrow s = 0$.
- α coincides with a non repeated root of characteristic polynomial $\Rightarrow s = 1$.
- α coincides with a repeated root of characteristic polynomial $\Rightarrow s=2$.

If
$$g(t) = (B_0 t^n + B_1 t^{n-1} + \dots + B_1 t^{n-1} + \dots + B_n) e^{\alpha t} \cos(\beta t)$$
 or $g(t) = (B_0 t^n + B_1 t^{n-1} + \dots + B_n) e^{\alpha t} \sin(\beta t)$, $\beta \neq 0$, then

- $\alpha + i\beta$ doesn't coincide with a root of characteristic polynomial $\Rightarrow s = 0$.
- $\alpha + i\beta$ coincides with a (complex) root of characteristic polynomial $\Rightarrow s = 1$.
- 10. If $g(t) = (B_0 t^n + B_1 t^{n-1} + \ldots + B_n) e^{\alpha t} \cos(\beta t)$ or $g(t) = (B_0 t^n + B_1 t^{n-1} + \ldots + B_n) e^{\alpha t} \sin(\beta t)$ then we choose a particular solution in the form

$$y_p(t) = t^s (A_0 t^n + A_1 t^{n-1} + \dots + A_n) e^{\alpha t} \cos(\beta t) + t^s (D_0 t^n + D_1 t^{n-1} + \dots + D_n) e^{\alpha t} \sin(\beta t),$$
 respectively.

11. Find general solution of

$$y'' + 2y' + 5y = 3\sin 2t$$

12. Determine a suitable choice for y_p :

	ay'' + by' + cy = g(t)	r_1, r_2	$\alpha + i\beta$	s	$y_p(t)$
1	$y'' = e^t$				
2	$y'' - 4y' + 4 = e^{2t}$				
3	$y'' + 2y' + 10y = 6\sin(3t)$	$r_{1,2} = -1 \pm 3i$			
4	$y'' + 2y' + 10y = 6e^{-t}\sin(3t)$	$r_{1,2} = -1 \pm 3i$			
5	$y'' + 2y' + 10y = (t^3 - 1)\sin(3t)$	$r_{1,2} = -1 \pm 3i$			
6	$y'' + 2y' + 10y = t^2 e^{-t} \sin(3t)$	$r_{1,2} = -1 \pm 3i$			
7	y'' = 2t - 2013	$r_1 = r_2 = 0$			