15: Method Variation of Parameters (MVP) (section 3.6)

1. Preliminary: For the first order linear nonhomogeneous equation $y^{\prime}+p(t) y=g(t)$, the MVP is the alternative to the Method of Integrating Factor. But MVP is more conceptual and can be generalized to the higher order ODE.

The idea: if $y_{1}(t)$ is a non-zero solution of the corresponding homogeneous equation, then $y(t)=C y_{1}(t)$ is general solution of the corresponding homogeneous equation. Variate the parameter (constant) C and seek a solution of the nonhomogeneous ODE in the form $y(t)=u(t) y_{1}(t)$.
2. Consider a second-order nonhomogeneous linear DE

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

If $\left\{y_{1}(t), y_{2}(t)\right\}$ is a fundamental set of solutions of the corresponding homogeneous equation, then the general solution of the corresponding homogeneous equation will be $y(t)=C_{1} y_{1}(t)+$ $C_{2} y_{2}(t)$. Variate the parameters C_{1}, C_{2} and seek a solution of the nonhomogeneous ODE in the form

$$
y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

Then Apply Product Rule and Cramer Rule to get

$$
u_{1}^{\prime}=-\frac{g(t) y_{2}(t)}{W\left(y_{1}, y_{2}\right)(t)}, \quad u_{2}^{\prime}=\frac{g(t) y_{1}(t)}{W\left(y_{1}, y_{2}\right)(t)}
$$

3. Advantage of MVP over the Method of undetermined coefficients:

- MVP always will yield a particular solution provided the associated homogeneous ODE can be solved.
- MVP is not limited to a function $g(x)$ that is a combination of $t^{m}, e^{\alpha t}, \sin (\beta t), \cos (\beta t)$.

4. Solve $y^{\prime \prime}+y=\tan t, \quad 0<t<\pi / 2$.
