20: Step functions. Differential equations with discontinuous forcing functions (sections 6.3 and 6.4)

1. Consider the n-th order linear ODE with constant coefficients:

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+a_{1} y^{\prime}+a_{0} y=g(t),
$$

where $g(t)$ is a piecewise continuous function (function with jump discontinuities).
Jump discontinuities occur naturally in engineering problems such as electrical circuits with on/off switches. To handle such behavior, Heaviside introduced the following step function.
2. Unit Step Function $u_{c}(t)(c \geq 0)$ is defined by

$$
u_{c}(t)= \begin{cases}0, & 0 \leq t<c \\ 1, & t \geq c\end{cases}
$$

3. When a function $f(t)$ defined for $t \geq 0$ is multiplied by $u_{c}(t)$, this unit step function "turns off" a portion of the graph of that function. For example, consider $\left(t^{2}+1\right) u_{3}(t)$.
4. FACT 1. Any function with jump discontinuities at $t=c_{1}, c_{2}, \ldots, c_{k}$ can be represented in terms of unit step functions. In other words, we can use unit step function to write a piecewisedefined functions in a compact form.
5. Express f in terms of unit step function
(a) $f(t)= \begin{cases}4, & 0 \leq t<3 \\ 1, & 3 \leq t<5 \\ -2, & 5 \leq t\end{cases}$
(b) $f(t)= \begin{cases}g(t), & 0 \leq t<a \\ h(t), & a \leq t\end{cases}$
(c) $f(t)= \begin{cases}3, & 0 \leq t<2 \\ 1, & 2 \leq t<3 \\ t, & 3 \leq t<5 \\ t^{2}, & 5 \leq t\end{cases}$
6. FACT 2. Translation in t property for Laplace Transform: if $F(s)=\mathcal{L}\{f(t)\}$ then

$$
F(s)=\mathcal{L}\left\{u_{c}(t) f(t-c)\right\}=e^{-c s} F(s) .
$$

7. Find $\mathcal{L}\left\{u_{c}(t)\right\}$
8. Duality between Laplace transform and its inverse:

Derivative	$\mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)$	$\mathcal{L}^{-1}\left\{F^{\prime}(s)\right\}=-t f(t)$
Translation	$\mathcal{L}\left\{e^{\alpha t} f(t)\right\}=F(s-\alpha)$	$\mathcal{L}^{-1}\left\{e^{-c s} F(s)\right\}=u_{c}(t) f(t-c)$

9. Let $f(t)$ will be the same as in $5(\mathrm{c})$. Find $\mathcal{L}\{f\}$.
10. Find the inverse Laplace transform of

$$
H(s)=\frac{e^{-4 s}}{s^{2}+9}+\frac{s e^{-3 s}}{s^{2}+4}
$$

11. Let

$$
g(t)= \begin{cases}20, & 0 \leq t<3 \pi \\ 0, & 3 \pi \leq t<4 \pi \\ 20, & 4 \pi \leq t\end{cases}
$$

(a) Solve IVP:

$$
y^{\prime \prime}+2 y^{\prime}+2 y=g(t), \quad y(0)=10, \quad y^{\prime}(0)=0
$$

Solution:
Step 1. Express $g(t)$ in compact form.

Step 2. Find $\mathcal{L}\{g(t)\}=G(s)$.

Step 3. Find $\mathcal{L}\left\{y^{\prime \prime}+2 y^{\prime}+2 y\right\}$.

Step 4. Combine steps $2 \& 3$ to get $\mathcal{L}\{y(t)\}=Y(s)$.

Step 5. Apply inverse Laplace transform to find $y(t)$. This step usually requires partial fraction decomposition.
(b) Sketch the graph of $y(t)$.

