24: Basic Theory of Systems of First Order Linear Equations (sec. 7.4)

System of homogeneous linear equations

1. Consider a system of first order linear homogeneous DE:

$$
\begin{equation*}
X^{\prime}=P(t) X \tag{1}
\end{equation*}
$$

Superposition Principle: If the vector functions X_{1} and X_{2} are solutions of the homogeneous system (1), then the linear combination $C_{1} X_{1}+C_{2} X_{2}$ is also a solution for any constants C_{1}, C_{2}.
2. Given the following system

$$
X^{\prime}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & 0 \\
-2 & 0 & -1
\end{array}\right) X
$$

Show that the vector functions

$$
X_{1}=\left(\begin{array}{c}
2 \cos t \\
-\cos t+\sin t \\
-2 \cos t-2 \sin t
\end{array}\right), \quad X_{2}=\left(\begin{array}{c}
0 \\
e^{t} \\
0
\end{array}\right)
$$

are solutions of the given system. Discuss a linear combination of these solutions.
3. Consider IVP

$$
\begin{equation*}
X^{\prime}=P(t) X, \quad X\left(t_{0}\right)=b \tag{2}
\end{equation*}
$$

By Superposition Principle, if If the vector functions

$$
X_{1}(t)=\left(\begin{array}{c}
x_{11}(t) \\
\vdots \\
x_{n 1}(t)
\end{array}\right), \ldots, X_{n}(t)=\left(\begin{array}{c}
x_{1 n}(t) \\
\vdots \\
x_{n n}(t)
\end{array}\right)
$$

are solutions of the homogeneous system (1), then the linear combination

$$
X(t)=C_{1} X_{1}(t)+\ldots+C_{n} X_{n}(t)
$$

is also a solution for any constants C_{1}, \ldots, C_{n}.
Question: How to determine the the constants C_{1}, \ldots, C_{n} corresponding to the given IVP?
4. Consider the matrix, whose columns are vectors $X_{1}(t), \ldots, X_{n}(t)$:

$$
\Psi(t)=\left(\begin{array}{ccc}
x_{11}(t) & \ldots & x_{1 n}(t) \\
\vdots & \vdots & \vdots \\
x_{n 1}(t) & \ldots & x_{n n}(t)
\end{array}\right)
$$

Then $B=x\left(t_{0}\right)=C_{1} X_{1}\left(t_{0}\right)+\ldots+C_{n} X_{n}\left(t_{0}\right)=\Psi\left(t_{0}\right)\left(\begin{array}{c}C_{1} \\ \vdots \\ C_{n}\end{array}\right)$, equivalently,

$$
\Psi\left(t_{0}\right)\left(\begin{array}{c}
C_{1} \\
\vdots \\
C_{n}
\end{array}\right)=b
$$

We can find a solution for any initial condition given by vector column b if and only if $\operatorname{det} \Psi\left(t_{0}\right) \neq 0$.
5. Note that this determinant is called the Wronskian of the solutions X_{1}, \ldots, X_{n} and is denoted by

$$
W\left[X_{1}, \ldots, X_{n}\right](t)=\operatorname{det} \Psi(t)
$$

6. Note that by analogy with section $3.2, \operatorname{det} \Psi\left(t_{0}\right) \neq 0$ implies $\operatorname{det} \Psi(t) \neq 0$ for any t.
7. If $\operatorname{det} \Psi(t) \neq 0$ then X_{1}, \ldots, X_{n} is called the fundamental set of solutions and the general solution of the system (1) is $C_{1} X_{1}(t)+\ldots+C_{n} X_{n}(t)$.
8. Given that the vector functions $X_{1}=\binom{e^{-2 t}}{-e^{-2 t}}$ and $X_{2}=\binom{3 e^{6 t}}{5 e^{6 t}}$ are solutions of the system $X^{\prime}=\left(\begin{array}{ll}1 & 3 \\ 5 & 3\end{array}\right) X$. Find general solution of these system.
9. Question:How to find a fundamental set of solutions? In the next section we answer it for the case $P(t)=$ const, i.e. for system of linear homogeneous equations with constant coefficients.
10. Find general solution of $X^{\prime}=A X$, where $A=\left(\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right)$.
