28: Repeated Eigenvalues (sec. 7.5 (continued) and sec. 7.8)

Preliminary

1. Definition One says that n vectors v_{1}, \ldots, v_{n} constitute a basis in \mathbb{R}^{n} if any other vector v in \mathbb{R}^{n} can be uniquely represented as a linear combination of v_{1}, \ldots, v_{n}, i.e. there exist constants c_{1}, \ldots, c_{n} such that

$$
v=c_{1} v_{1}+\ldots c_{n} v_{n} .
$$

Repeated eigenvalues

2. Recal that A is $n \times n$ real matrix. If m is a positive integer and $\left(\lambda-\lambda_{k}\right)^{m}$ is a factor of the characteristic polynomial $\operatorname{det}(A-\lambda I)$ while $\left(\lambda-\lambda_{k}\right)^{m+1}$ is not a factor, then λ_{k} is said to be an eigenvalue of multiplicity m. Note that $m \leq n$.
3. Let A has n distinct real eigenvalues (i.e. all eigenvalues are of multiplicity one). In this case the corresponding eigenvectors v_{1}, \ldots, v_{n} constitute a basis in \mathbb{R}^{n}. Recall that a fundamental set of solutions of system $X^{\prime}=A X$ in this case is $\left\{e^{\lambda_{1} t} v_{1}, \ldots, e^{\lambda_{n} t} v_{n}\right\}$.

Case 1: There is a Basis of Eigenvectors

4. If for a given matrix A with real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (where some of them may be of multiplicity 2 or more, i.e. may be repeated several times) there exists a basis v_{1}, \ldots, v_{n} of eigenvectors then $\left\{e^{\lambda_{1} t} v_{1}, \ldots, e^{\lambda_{n} t} v_{n}\right\}$ is a fundamental set of solutions of system $X^{\prime}=A X$.
5. Basis of eigenvectors does not always exist. For example, if $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ then there is no basis of eigenvectors of this matrix.
6. Basis of eigenvectors always exists for a special kind of matrix know as a symmetric matrix: $A^{T}=A$, or equivalently, $a_{i j}=a_{j i}$ for all i, j.
7. Example. Find general solution of the system

$$
\begin{aligned}
x_{1}^{\prime} & =3 x_{1}+2 x_{2}+4 x_{3} \\
x_{2}^{\prime} & =2 x_{1}+2 x_{3} \\
x_{3}^{\prime} & =4 x_{1}+2 x_{2}+3 x_{3}
\end{aligned}
$$

Case2: There is NO Basis of Eigenvectors

8. Suppose that λ is an eigenvalue of multiplicity two and that there is only one eigenvector v associated with this value. In other words, there is no basis of eigenvectors of A. A second solution for a fundamental set can be found in the form

$$
t e^{\lambda t} v+e^{\lambda t} w
$$

where w is so called generalized eigenvector satisfying the condition

$$
(A-\lambda I) w=v
$$

9. Fundamental set of solutions in the case of repeated eigenvalues for $n=2$:

$$
\left\{e^{\lambda t}, t e^{\lambda t} v+e^{\lambda t} w\right\}
$$

10. Example. Consider the system:

$$
\begin{aligned}
x_{1}^{\prime} & =-3 x_{1}+\frac{5}{2} x_{2} \\
x_{2}^{\prime} & =-\frac{5}{2} x_{1}+2 x_{2}
\end{aligned}
$$

(a) Find general solution of the system.
(b) Find solution of the system satisfying $x_{1}(0)=2, x_{2}(0)=1$.

