30: Non-homogeneous Linear Systems (section 7.9)

1. Consider a Non-homogeneous Linear system

$$
\begin{equation*}
X^{\prime}=P(t) X+G(t) \tag{1}
\end{equation*}
$$

where

$$
X=\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right), \quad P(t)=\left(\begin{array}{cccc}
p_{11}(t) & p_{12}(t) & \ldots & p_{1 n}(t) \\
p_{21}(t) & p_{22}(t) & \ldots & p_{2 n}(t) \\
\vdots & & & \vdots \\
p_{n 1}(t) & p_{n 2}(t) & \ldots & p_{n n}(t)
\end{array}\right), \quad G(t)=\left(\begin{array}{c}
g_{1}(t) \\
g_{2}(t) \\
\vdots \\
g_{n}(t)
\end{array}\right)
$$

2. By analogy with the case of a scalar equation we have here that general solution can be expressed as

$$
X(t)=X_{p}(t)+X_{H}(t)
$$

where X_{p} is a particular solution of the given system, and X_{h} is a solution of the corresponding homogeneous system,

$$
\begin{equation*}
X^{\prime}=P(t) X \tag{2}
\end{equation*}
$$

3. Suppose that $\left\{X_{1}(t), \ldots, X_{n}(t)\right\}$ is a fundamental set solutions of the corresponding homogeneous system (2). Consider the so called fundamental matrix, $\Psi(t)$, whose columns are vectors $X_{1}(t), \ldots, X_{n}(t)^{1}$

$$
\Psi(t)=\left(\begin{array}{ccc}
x_{11}(t) & \ldots & x_{1 n}(t) \\
\vdots & \vdots & \vdots \\
x_{n 1}(t) & \ldots & x_{n n}(t)
\end{array}\right)
$$

Then

$$
\begin{equation*}
X_{h}(t)=\Psi(t) C \tag{3}
\end{equation*}
$$

where $C=\left(\begin{array}{c}C_{1} \\ \vdots \\ C_{n}\end{array}\right)$.

Method of Variation of Parameters

4. We use the above method to find $X_{p}(t)$. Seek a particular solution of (1) variating parameters:

$$
X(t)=\Psi(t) U(t)
$$

where $U(t)=\left(\begin{array}{c}u_{1}(t) \\ \vdots \\ u_{n}(t)\end{array}\right)$.

[^0]5. One can show that then
$$
\Psi(t) U^{\prime}(t)=G(t)
$$
which implies
$$
X_{p}(t)=\int_{0}^{t} \Psi(t) \Psi^{-1}(\tau) g(\tau) \mathrm{d} \tau
$$

As a result we get general solution of (1):

$$
X(t)=\Psi(t) C+\int_{0}^{t} \Psi(t) \Psi^{-1}(\tau) g(\tau) \mathrm{d} \tau
$$

6. Example Find general solution of the system:

$$
\begin{aligned}
& x_{1}^{\prime}=-2 x_{1}+x_{2}+e^{-t} \\
& x_{2}^{\prime}=x_{1}-2 x_{2}-e^{-t}
\end{aligned}
$$

where $0<t<\pi$.

[^0]: ${ }^{1}$ Recall that $\operatorname{det} \Psi(t)=W\left[X_{1}, \ldots, X_{n}\right](t)$

