## 3. Linear Equations: Method of Integrating Factors (2.1)

1. A first order ODE is called linear if it is expressible in the form

$$
\begin{equation*}
y^{\prime}+p(t) y=g(t) \tag{1}
\end{equation*}
$$

where $p(t)$ and $g(t)$ are given functions.
2. If $g(t) \equiv 0$ then

$$
\begin{equation*}
y^{\prime}+p(t) y=0 \tag{2}
\end{equation*}
$$

is called a homogeneous liner ODE. Otherwise (1) is called a non-homogeneous liner ODE.
3. The equation (1) is separable if and only if there is a real constant $\alpha$ such that $g(t)=\alpha p(t)$. (We already know how to solve it!)
4. The method to solve (1) for arbitrary $p(t)$ and $q(t)$ is called The Method of Integrating Factors

## The Method of Integrating Factors

Step 1 Put ODE in the form (1).
Step 2 Find the integrating factor

$$
\mu(t)=e^{\int p(t) \mathrm{d} t}
$$

Note: Any $\mu$ will suffice here, thus take the constant of integration $C=0$.
Step 3 Multiply both sides of (1) by $\mu$ and use the Product Rule for the left side to express the result as

$$
\begin{equation*}
(\mu(t) y(t))^{\prime}=\mu g(x) \tag{3}
\end{equation*}
$$

Step 4 Integrate both sides of (3). Note: Be sure to include the constant of integration in this step!
Step 5 Solve for the solution $y(t)$.
5. Consider

$$
y^{\prime}-3 x y=-x e^{x^{2}} .
$$

(a) Find the general solution.
(b) Find the solution satisfying the initial condition $y(0)=y_{0}$.
(c) How do the solutions behave as $x$ becomes large (i.e $x \rightarrow+\infty$ )? Does that behavior depend on the choice of the initial value $y_{0}$ ?

