7. Differences between Linear and Nonlinear Equations (section 2.4)

1. Existence and Uniqueness of Solutions

THEOREM 1. Let the functions f and $\partial f / \partial y$ be continuous in some rectangle

$$
R=\{(t, y) \mid \alpha<t<\beta, \quad \gamma<y<\delta\}
$$

containing the point $\left(t_{0}, y_{0}\right)$. Then in some interval $t_{0}-h<t<t_{0}+h$ contained in $I=\{t \mid \alpha<t<\beta\}$, there is a unique solution $y=y(t)$ of the initial value problem

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

2. By this theorem we can guarantee the existence of solution only for values of t which are sufficiently closed to t_{0}, but not for all t.
3. Geometric consequence of the theorem is that two integral curves never intersect each other.
4. The condition " $\partial f / \partial y$ be continuous in some rectangle..." is important for uniqueness.

Illustration: Apply the existence and uniqueness theorem to the following IVP:

$$
y^{\prime}=y^{2 / 3}, \quad y(0)=0
$$

5. Existence and Uniqueness of Solutions of Linear ODE

THEOREM 2. If the functions $p(t)$ and $g(t)$ are continuous on the interval $I=\{t \mid \alpha<t<\beta\}$, then for any $t=t_{0}$ on I, there is a unique solution $y=y(t)$ of the initial value problem

$$
\begin{equation*}
y^{\prime}+p(t) y=g(t), \quad y\left(t_{0}\right)=y_{0} . \tag{1}
\end{equation*}
$$

6. Note that the conditions of the Theorem 1 hold automatically for linear ODE.
7. Determine (without solving the problem) an interval in which the solution of the given IVP is certain to exist:

$$
(t-3) y^{\prime}+(\ln |t|) y=2 t
$$

(a) $y(1)=2$
(b) $y(5)=7$
8. Consider

$$
\begin{equation*}
t y^{\prime}+2 y=4 t^{2} \tag{2}
\end{equation*}
$$

(a) Determine (without solving the problem) an interval in which the solution (2) satisfying $y\left(t_{0}\right)=y_{0}$ with $t_{0}>0$ is certain to exist.
(b) The solution of IVP from item (a) found by the method of integrating factor is given:

$$
y(t)=t^{2}+\frac{C}{t^{2}}, \quad C=t_{0}^{2}\left(y_{0}-t_{0}^{2}\right) .
$$

Using that information discuss the domain of the solution and compare your conclusion with the answer of (a).

