8. Exact Equations and Integrating Factors (section 2.6)

1. Method for solving the first order ODE

$$
\begin{equation*}
M(x, y)+N(x, y) y^{\prime}=0 \quad(\text { or } \quad M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0) \tag{1}
\end{equation*}
$$

for the special case in which (1) represents the exact differential of a function $z=\Phi(x, y)$.
2. The equation (1) is an exact ODE if there exists a function $\Phi(x, y)$ having continuous partial derivatives such that

$$
\Phi_{x}(x, y)=M(x, y), \quad \Phi_{y}(x, y)=N(x, y)
$$

and The general solution of the equation is $\Phi(x, y)=C$ (geometrically, the integral curve $y=y(x)$ lies on a level curve of the function $z=\Phi(x, y)$.)
3. TEST for Exactness: If M and N have continuous partial derivatives then the ODE (1) is exact if and only if

$$
\begin{equation*}
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \tag{2}
\end{equation*}
$$

4. Question: Is every separable equation exact?
5. Determine whether the following ODE are exact:
(a) $3 x^{2}-2 x y+2+\left(6 y^{2}-x^{2}+3\right) y^{\prime}=0$
(b) $\left(3 x^{2} y+2 x y+y^{3}\right) \mathrm{d} x+\left(x^{2}+y^{2}\right) \mathrm{d} y=0$
6. Test for exactness and Conservative Vector Field:

The test for exactness is the same as the test for determining whether a vector field $\mathbf{F}(x, y)=$ $\langle M(x, y), N(x, y)\rangle$ is conservative. Namely, it is the same as the test for determining whether $\mathbf{F}(x, y)=$ the gradient of a potential function.
CONCLUSION: A general solution to an exact differential equation can be found by the method used to find a potential function for a conservative vector field.
7. Solve $3 x^{2}-2 x y+2+\left(6 y^{2}-x^{2}+3\right) y^{\prime}=0$
8. A nonexact ODE made exact: If ODE is not exact, it may be possible to make it exact by multiplying by an appropriate integrating factor.

- If $\frac{M_{y}-N_{x}}{N}$ is a function of x alone, then an integrating factor for (1) is

$$
\mu(x)=e^{\int \frac{M_{y}-N_{x} x}{N} \mathrm{~d} x} .
$$

- If $\frac{N_{x}-M_{y}}{M}$ is a function of y alone, then an integrating factor for (1) is

$$
\mu(y)=e^{\int \frac{N_{x}-M y}{M} \mathrm{~d} y} .
$$

9. Solve $\left(3 x^{2} y+2 x y+y^{3}\right) \mathrm{d} x+\left(x^{2}+y^{2}\right) \mathrm{d} y=0$
