## WORKSHEET ( Extra Credit +20 points to Homework 4)

Directions: Solve Examples 1,2. For Example 2 represent a solution supported by FACTS 1-4 below. Due Wednesday February 6 at the beginning of class. Staple this extra credit behind the Homework 4 solution.

EXAMPLE 1. Find roots of the following quadratic equations:
(a) $4 r^{2}-12 r+9=0$
(b) $r^{2}-5=0$
(c) $4 r^{2}+r-1=0$
(d) $r^{2}+r+1=0$

## Facts from Algebra

- FACT 1: Cramer's Rule for solving the system of equations

$$
\begin{aligned}
& a_{1} x+b_{1} y=c_{1} \\
& a_{1} x+b_{2} y=c_{2}
\end{aligned}
$$

The rule says is that if the determinant of the coefficient matrix is not zero, i.e.

$$
\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right| \neq 0,
$$

then the system has a unique solution $(x, y)$ given by

$$
x=\frac{\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}, \quad y=\frac{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
$$

- FACT 2: If determinant of the coefficient matrix is zero then either there is no solution, or there are infinitely many solutions.
- FACT 3. The homogeneous system of linear equations

$$
\begin{aligned}
a_{1} x+b_{1} y & =0 \\
a_{1} x+b_{2} y & =0
\end{aligned}
$$

always has the "trivial" solution $(x, y)=(0,0)$. By Cramer's rule this is the only solution if the determinant of the coefficient matrix is not zero.

- FACT 4: If determinant of the coefficient matrix of homogeneous system of linear equations is zero then there are infinitely many nontrivial solutions $(x, y) \neq(0,0)$.

EXAMPLE 2. Use the above Facts 1-4 to solve the following system of linear equations:
(a) $\quad 2 x+3 y=10$
$3 x-5 y=4$
(b) $\begin{gathered}2 x-2 y=4 \\ x-y=7\end{gathered}$
(c) $\begin{aligned} 2 x-2 y & =0 \\ 3 x-3 y & =0\end{aligned}$

