10. Linear homogeneous equations of second order with constant coefficients the case of distinct roots of characteristic equation (sec. 3.1)

1. PROBLEM: Find general solutions of linear homogeneous equation

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{1}
\end{equation*}
$$

with constant real coefficients a, b, and c.
2. Recall that

- By Superposition Principle: Any linear combination $C_{1} y_{1}(t)+C_{2} y_{2}(t)$ of any two solutions $y_{1}(t)$ and $y_{2}(t)$ of (1) is itself a solution.
- The family of solutions $y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ with arbitrary coefficients C_{1} and C_{2} includes every solution of (1) if and only if there is a points t_{0} where $W\left(y_{1}, y_{2}\right)$ is not zero. In this case the pair $\left(y_{1}(t), y_{2}(t)\right)$ is called the fundamental set of solutions of (1).

3. To find a fundamental set for the equation (1) note that the nature of the equation suggests that it may have solutions of the form

$$
y=e^{r t} .
$$

Plug in and get so called characteristic equation of (1):

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{2}
\end{equation*}
$$

Note that the characteristic equation can be determined from its differential equation simply by replacing $y^{(k)}$ with with r^{k}.
4. Solve $y^{\prime \prime}-16 y^{\prime}=0$.
5. Fact from Algebra: The quadratic equation $a r^{2}+b r+c=0$ has roots

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

which fall into one of 3 cases:

- two distinct real roots $r_{1} \neq r_{2}$ (in this case $D=b^{2}-4 a c>0$) [section 3.1]
- two complex conjugate roots $r_{1}=\overline{r_{2}}$ (in this case $D=b^{2}-4 a c<0$) [section 3.3]
- two equal real roots $r_{1}=r_{2}$ (in this case $D=b^{2}-4 a c=0$) [section 3.4]

Case 1: Two distinct real roots $\left(D=b^{2}-4 a c>0\right)$
6. Two distinct real roots r_{1} and r_{2} of the characteristic equation give us two solutions

$$
y_{1}(t)=e^{r_{1} t}, \quad y_{2}(t)=e^{r_{2} t} \quad\left(r_{1} \neq r_{2}\right) .
$$

Is this a fundamental set of solutions?
7. Consider

$$
3 y^{\prime \prime}-y^{\prime}-2 y=0
$$

(a) Find general solution.
(b) Find solution satisfying the following initial conditions: $y(0)=\alpha, \quad y^{\prime}(0)=1$, where α is a real parameter.
8. Consider

$$
y^{\prime \prime}+(a+1) y^{\prime}+(a-2)(1-2 a) y=0
$$

where a is a real parameter.
(a) Determine the values of the parameter a, if any, for which all solutions tend to zero as $t \rightarrow \infty$.
(b) Determine the value of the parameter a, if any, for which all (nonzero) solutions become unbounded as $t \rightarrow \infty$.

