11: Complex roots of the characteristic equation (section 3.3.)

1. Case 2: two complex conjugate roots $r_{1}=\overline{r_{2}}$ (in this case $D=b^{2}-4 a c<0$)
2. Recall that the characteristic equation of a linear homogeneous equation with constant real coefficients

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{1}
\end{equation*}
$$

is

$$
\begin{gather*}
a r^{2}+b r+c=0 . \tag{2}\\
D=b^{2}-4 a c<0 \Rightarrow r_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=-\frac{b}{2 a} \pm i \frac{\sqrt{|D|}}{2 a}=: \lambda+i \mu
\end{gather*}
$$

Then two particular solutions which form a fundamental set are

$$
y_{1}=e^{(\lambda+i \mu) t}, \quad y_{2}=e^{(\lambda-i \mu) t} .
$$

3. Note that formally there is no difference between this case and Case 1 (two distinct real roots). However in practice we prefer to work with real functions instaed of complex exponentials. By Superposition Principle the following linear combinations are solutions as well

$$
\frac{1}{2}\left(y_{1}+y_{2}\right)=e^{\lambda t} \cos (\mu t), \quad \frac{1}{2 i}\left(y_{1}-y_{2}\right)=e^{\lambda t} \sin (\mu t)
$$

Note that these solutions are real functions.
4. FACT: $\frac{\mathrm{d}}{\mathrm{d} t}\left(e^{r t}\right)=r e^{r t}$ for any complex r.
5. Show that $\left\{e^{\lambda t} \cos (\mu t), e^{\lambda t} \sin (\mu t)\right\}$ is a fundamental set of solutions, i.e. that general solution of (1) has a form

$$
\begin{equation*}
y(t)=C_{1} e^{\lambda t} \cos (\mu t)+C_{2} e^{\lambda t} \sin (\mu t) \tag{3}
\end{equation*}
$$

6. Solve the following two differential equations which are important in applied mathematics:

$$
y^{\prime \prime}+\omega^{2} y=0 \quad \text { and } \quad y^{\prime \prime}-\omega^{2} y=0
$$

where ω is a real positive constant.

7. Alternative form of solution (3):

$$
\begin{equation*}
y(t)=e^{\lambda t} R \cos (\mu t-\delta) \tag{4}
\end{equation*}
$$

where

$$
R=\sqrt{C_{1}^{2}+C_{2}^{2}}, \quad \cos \delta=\frac{C_{1}}{\sqrt{C_{1}^{2}+C_{2}^{2}}}=\frac{C_{1}}{R}, \quad \sin \delta=\frac{C_{2}}{\sqrt{C_{1}^{2}+C_{2}^{2}}}=\frac{C_{2}}{R}
$$

Note that $\tan \delta=C_{2} / C_{1}$.
8. Application: Mechanical unforced vibration: a mass hanging from a spring (more details in Section 3.7).

- $\lambda=0$ corresponds to undamped free vibration (simple harmonic motion)
- $\lambda<0$ corresponds to damped free vibration
- R is called the amplitude of the motion
- δ is called the phase, or phase angle, and measures the displacement of the wave from its normal position corresponding to $\delta=0$.
- $T=\frac{2 \pi}{\mu}$ is the period of the motion.

9. Consider

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+3 y=0 . \tag{5}
\end{equation*}
$$

(a) Find general solution.
(b) Find solution of (5) subject to the initial conditions

$$
y(0)=2, \quad y^{\prime}(0)=1
$$

(c) Sketch the graph of the solution of IVP from (b) and describe its behavior as t increases.

