12. The case of equal (or repeated) roots (section 3.4)

1. Case 3: two equal/repeated real roots $r_{1}=r_{2}(=r)$ (in this case $\left.D=b^{2}-4 a c=0\right)$
2. Recall that the characteristic equation of a linear homogeneous equation with constant real coefficients

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{1}
\end{equation*}
$$

is

$$
\begin{gather*}
a r^{2}+b r+c=0 . \tag{2}\\
D=b^{2}-4 a c=0 \Rightarrow r=-\frac{b}{2 a}
\end{gather*}
$$

So, we found one particular solution $y_{1}(t)=e^{r t}$.
3. How to find a second particular solution y_{2} such that the set $\left\{y_{1}, y_{2}\right\}$ be fundamental, i.e. $W\left(y_{1}, y_{2}\right) \neq 0$?
Use "factorization" (in Leibnitz notation):

$$
a y^{\prime \prime}+b y^{\prime}+c y=a \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+b \frac{\mathrm{~d} y}{\mathrm{~d} t}+c y=\left(a \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}+b \frac{\mathrm{~d}}{\mathrm{~d} t}+c\right)[y]=a\left(\frac{\mathrm{~d}}{\mathrm{~d} t}-r\right)\left[\left(\frac{\mathrm{d}}{\mathrm{~d} t}-r\right)[y]\right]=0
$$

4. $\left\{y_{1}, y_{2}\right\}=\left\{e^{r t}, t e^{r t}\right\}$ is fundamental set. Thus the general solution of (3) is

$$
y(t)=C_{1} e^{r t}+C_{2} t e^{r t} .
$$

5. Consider $y^{\prime \prime}-6 y^{\prime}+9 y=0$.
(a) Find general solution.
(b) Find solution subject to the initial conditions $y(0)=2, y^{\prime}(0)=\alpha$.
(c) For each α what is the behavior of the solutions as $t \rightarrow+\infty$?

SUMMARY:

Solution of linear homogeneous equation of second order with constant coefficients

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{3}
\end{equation*}
$$

Sign of $D=b^{2}-4 a c$	Roots of characteristic polynomial $a r^{2}+b r+c=0$	General solution
$D>0$	two distinct real roots $r_{1} \neq r_{2}$	$y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}$
$D<0$	two complex conjugate roots $r_{1}=\overline{r_{2}}:$ $r_{1,2}=\lambda \pm i \mu$	$y(t)=C_{1} e^{\lambda t} \cos (\mu t)+C_{2} e^{\lambda t} \sin (\mu t)$
$D=0$	two equal(repeated) real roots $r_{1}=r_{2}=r$	$y(t)=C_{1} e^{r t}+C_{2} t e^{r t}$

