Math 220 - Homework 12

Due Thursday $4 / 25$ at the beginning of class

Total points: 114

PART A

Problems from the textbook:

- Section 6.1 | problem | 1^{*} | 2^{*} | 3^{*} |
| :---: | :---: | :---: | :---: |
| points | 10 | 10 | 10 |
- Section 6.2 | problem | $1(\mathrm{a}, \mathrm{b})$ | 3^{*} |
| :---: | :---: | :---: |
| | points | 30 |

PART B

1. [3 points] Let S be a nonempty subset of \mathbb{Z}^{+}. Complete the following sentence:
"An element a is not the smallest element of S if ..."
2. * [10 points] Prove the following so called Modified form of the Principle of Mathematical Induction deriving it from PMI.

Let $P(n)$ be a statement about the integer n so that n is a free variable in $P(n)$. Suppose that there is an integer n_{0} such that
(a) The statement $P\left(n_{0}\right)$ is true.
(b) For all positive integers k such that $k \geq n_{0}$, if $P(k)$ is true, then $P(k+1)$ is also true.

Then $P(n)$ is true for every positive integer $n \geq n_{0}$.
3. [6 points] Restate the following so called Strong Principle of Mathematical Induction in set theory language.
(Hint: see the proof of the Theorem 1 in notes.)
Let $P(n)$ be a statement about the positive integer n so that n is a free variable in $P(n)$. Suppose the following:
(a) The statement $P(1)$ is true.
(b) For all positive integers k, if $P(i)$ is true for every positive integer $i \leq k$, then $P(k+1)$ is true.

Then $P(n)$ is true for every positive integer n.
4. [15 points] Let $a=-255$ and $b=143$
(a) Use the Euclidean Algorithm to determine $\operatorname{gcd}(a, b)$.
(b) Find integers x and y such that $a x+b y=\operatorname{gcd}(a, b)$.
5. *[10 points] Let $a, b \in \mathbb{Z}$ with a and b not both zero. Prove that if $d=\operatorname{gcd}(a, b)$, then $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.

