## Math 220 - Homework 1

## Due Thursday $1 / 26$ at the beginning of class <br> PART A

Problems from the textbook:

- Section 1.1 \# 1(b,c,f,h,i,k);
- Section 1.4 \# 8, 9, 10.


## PART B

1. State the negation for each of the following statements.
(a) $\sqrt{3}$ is a rational number.
(b) 0 is not a negative number.
(c) The real number $r$ is at most $\sqrt{3}$
(d) Two sides of a triangle have the same length.
(e) The point $P$ on the plane lies outside of the circle $C$.
2. For the open sentence $S(x): 3 x-5>10$ over the domain $\mathbb{N}$, determine:
(a) the values of $x$ for which $S(x)$ is a true statement.
(b) the values of $x$ for which $S(x)$ is a false statement.
3. For the open sentence $P(x):\left(x^{2}-16\right)\left(x^{4}-16\right)\left(x^{8}+16\right)=0$ over domain $D$, determine:
(a) the values of $x$ for which $P(x)$ is a true statement if $D=\mathbb{R}$.
(b) the values of $x$ for which $P(x)$ is a false statement if $D=\mathbb{Z}^{+}$.
4. Prove that the statement $\neg((\neg Q \wedge(P \Rightarrow Q)) \Rightarrow(\neg P))$ is a tautology, a contradiction, or neither. You must state which of the three it is as well as give the proof.
5. In each of the following statements identify the hypothesis (assumption) and conclusion.
(a) If $a$ is irrational, then $2 a$ is irrational.
(b) $a^{3}$ is an even integer whenever $a$ is an even integer.
6. Without changing their meanings, convert each of the following sentences into a sentence having the form "If $P$, then $Q$."
(a) A function is integrable provided the function is continuous.
(b) A function is rational if it is a polynomial.
(c) "Whenever people agree with me I feel I must be wrong." (Oscar Wilde)
7. Without changing its meaning, convert the sentence "If $x y=0$, then $x=0$ or $y=0$, and conversely." into a sentence having the form " $P$ if and only if $Q$."
8. Consider the statements: $P: 2018 \in 5 \mathbb{Z}$, and $Q: 5^{2018} \in \mathbb{O}$. Write each of the following statements in words and indicate whether it is true or false.
(a) $P$;
(b) $Q$;
(c) $\neg P$;
(d) $P \vee Q$;
(e) $P \wedge Q$;
(f) $P \Rightarrow Q$;
(g) $\neg Q \Rightarrow P$;
(e) $P \Leftrightarrow Q$.
