Math 220 - Homework 1

Due Thursday 01/24 at the beginning of class

Total points: 236 (Writing portion 125pts) (Problems marked by $*$ will count toward writing portion.) PART A*

Problems from the textbook:

- Section 1.1

problem	$2(\mathrm{~b})$	$3(\mathrm{~b})$	$4(\mathrm{~d}, \mathrm{e})$
points	5	5	10

PART B

1. 24 points Determine whether each of the following sentences is a proposition, predicate, or neither.
(a) Harry Potter.
(e) Schreck is six feet tall.
(b) What an impossible question!
(f) All of your classmates play tennis.
(c) Multiply the function by 6 .
(g) $1+2+3+4+5$
(d) $x^{2}+1=0$
(h) The square of every real number is positive.
2. 24 points State the negation for each of the following propositions.
(a) Texas A\&M University has no major in Mathematics.
(b) $33-75<-100$
(c) Today is Sunday.
(d) The integer 0 is not a negative number.
(e) The center of the sphere S lies inside of S.
(f) At least two of my library books are overdue.
3. 50 points Consider the propositions $P: 2020^{2019} \in 4 \mathbb{Z}$ and $Q: x \notin\{a, b, c, x, y, z\}$.
(a) Write each of the following compound statements in words and indicate whether it is true or false.
(a) P; (b) $Q ; \quad$ (c) $\neg P$;
(d) $P \vee Q$;
(e) $\neg(P \wedge Q)$;
(f) $P \Rightarrow Q$;
(g) $\neg Q \Rightarrow P$;
(e) $P \Leftrightarrow Q$.
(f) converse of $P \Rightarrow Q ; \quad$ (g) contrapositive of $P \Rightarrow Q$;
4. 10 points For the predicate $P(x):\left(x^{2}-16\right)\left(x^{4}-16\right)=0$, where $x \in \mathcal{U}$, determine:
(a) the values of x for which $P(x)$ is a true statement if $\mathcal{U}=\mathbb{R}$.
(b) the values of x for which $P(x)$ is a false statement if $\mathcal{U}=\mathbb{N}$.
5. Consider the following statement:

If the set A contains x and y, then it contains either a or b.
(a) 3 points Rewrite the given statement in symbols.
(b) $* 25$ points For each of the following, determine whether the given statement is true or false. Justify your answer in each case.
i. $(x \notin A) \wedge(a \in A)$;
iv. $(x \in A) \wedge(y \in A) \wedge(a \in A) \wedge(b \in A)$;
ii. $(x \in A) \wedge(y \in A) \wedge(a \notin A) \wedge(b \notin A)$;
iii. $(x \notin A) \wedge(a \notin A) \wedge(b \in A)$;
v. $(x \notin A) \wedge(y \notin A) \wedge(a \notin A) \wedge(b \notin A)$
6. * 10 points For the predicates $p(x): x+1 \geq 4$ and $q(x): 13<4 x$ over a domain (universe) $S=\{0,2,3,4,6\}$, determine all values of $x \in S$ for which the biconditional $P(x) \Leftrightarrow Q(x)$ is true. Show all work.

NAME (print) \qquad
Rewrite each sentence according to provided guidelines (see "Communicating Mathematics" on eCampus), then using complete sentences give a reason to corrections you made.

1. If $x \wedge y$ are integers of the same parity, then $x+y$ is even.
2. The product of two rational numbers m and n is rational.
3. All solutions of the given equation are >0.
4. $x^{2}+1$ is nonnegative for every real x.
5. A rational number is a real number that cannot be expressed as a ratio of integers, e.g. as a fraction.
6. Pure mathematics topics often turn out to have applications, i.e. number theory in cryptography.
7. Let f and G be two given functions.
8. If n is even, then $n=2 m$.
9. The sets A and B contains elements M, N.
