Math 220 - Homework 2 (HNR)

Due Thursday 09/15 at the beginning of class
 PART A

Problems from the textbook:

- Section 1.1 \# 2(c,e,f,h); 3(c,e,f,h) 5(b,c,e,f); D1(a).
- Section 1.2 \# 5(b,c,e); 13c; D4

PART B

1. Express the following statements in symbols. (Do not use " \Rightarrow ")
(a) Every even integer can be expressed as the sum of two odd integers.
(b) The square of any real number is positive.
2. Given a quantified statement

$$
\begin{equation*}
\forall x \in \mathbb{Z}^{+},\left(\exists y \in \mathbb{Z}^{+} \ni x y \in \mathbb{E}\right) . \tag{1}
\end{equation*}
$$

(a) Express the given statement (1) in words.
(b) Express the negation of the given statement (1) in symbols. (Do NOT use the symbol \notin.)
(c) Express the negation of the given statement (1) in words.
3. Negate the following statements:
(a) There is a politician who is honest or trustworthy.
(b) The number p is prime or the number q is not prime.
4. Given a quantified statement

$$
\begin{equation*}
\forall x \in \mathbb{R}, \exists n \in \mathbb{Z} \ni(n \leq x<n+1) . \tag{2}
\end{equation*}
$$

(a) Express the statement (2) in words.
(b) Express the negation of the statement (2) in symbols. (Do NOT use the symbol \notin.)
5. Consider the following statement:
"If x is a real positive number, then there is a real positive number ε such that $x<\varepsilon$ but $\frac{1}{\varepsilon}<x$."
(a) Express the given statement in symbols. (Do not use " \Rightarrow ")
(b) Express the negation of the given statement in symbols in a useful form .
(c) Express the negation of the given statement in words.
6. Consider the following definition:

A real-valued function $f(x)$ is said to be decreasing on the closed interval $[a, b]$, if for all $x_{1}, x_{2} \in[a, b]$, if $x_{1}<x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$.
(a) Write the negation of this definition.
(b) Give an example of a decreasing function on $[-1,1]$.
(c) Give an example of a function that is not decreasing on $[-1,1]$.

