Math 220 (HNR) - Homework 3

point split: Total points $=108$

Due Thursday 02/09 at the beginning of class

PART A

Problems from the textbook:

- Section 1.1 \# D5 [5 points], D6 [5 points]

PART B

1. [10 points] Let $x \in \mathbf{R}$. Prove that if $0<x<1$, then $x^{2}-2 x+2 \neq 0$.
2. [10 points] Let $z \in \mathbf{R}^{+}$. Prove that if $z^{4}-2 z^{2}+2 \leq 0$, then $z^{2017} \geq 2017$.
3. [10 points] Prove that if n is an even integer, then $n^{2017}+17(n-1)^{2}-2017$ is even.
4. [10 points] Prove that if x and y are odd integers, then $x z-y z$ is even for every integer z.
5. [15 points] Prove the following statement by direct proof:
''Let $n \in \mathbf{Z}$. Then n is odd if and only if $7 n+17$ is even.''
6. Consider the following statement:
' For all integers x and y such that $x \neq 0$, if $x \mid y$, then $x^{17} \mid y^{17 . ', ' ~}$
(a) [10 points] Prove the above statement.
(b) [3 points] Formulate the converse statement.
7. Consider the following definition:

A real-valued function $f(x)$ is said to be decreasing on the closed interval $[a, b]$, if for all $x_{1}, x_{2} \in[a, b]$, if $x_{1}<x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$.
(a) [6 points] Write the negation of this definition.
(b) [6 points] Give an example of a decreasing function on $[-1,1]$ and based on the above definition explain why your example is correct.
(c) [6 points] Give an example of a function that is not decreasing on $[-1,1]$ and based on the negation of the above definition explain why your example is correct.
8. For each of the following statements, give an example of the domain D in which the statement is true and an example of the domain D in which the statement is false. Explain why your answers are correct.
(a) $\left[6\right.$ points] $\forall x \in D,\left(\left(0<x^{2}<2\right) \Rightarrow(x=1)\right)$
(b) $[6$ points $] \forall x \in D,\left(\left(0<x^{2}<2\right) \Rightarrow((x=1) \vee(x=-1))\right)$

