Math 220-Homework 3

Due Thursday 02/12 at the beginning of class

PART A

Problems from the textbook:

- Section 1.4 \# 5, 16, $17^{1}, 20,21$

PART B

1. Determine the truth or falsehood of the following statements. (Write TRUE or FALSE for each statement.)
(a) $P \Rightarrow P$ is a tautology.
(b) $P \Rightarrow \neg P$ is a contradiction.
(c) The contrapositive of the statement
"If all elements of A are elements of B, then A is a subset of B " is the statement
"If A is a subset of B, then all elements of A are elements of B ".
(d) $\{a, b\}=\{b, a, b\}$
(e) $\{x \in \mathbb{N} \mid-x \in \mathbb{N}\}=\emptyset$.
(f) If $A=\{m \in \mathbb{Z} \mid 2<m \leq 5\}$ then $|A|=4$.
2. Given a quantified statement

$$
\begin{equation*}
\exists a \in \mathbb{Z}^{+} \ni \forall b \in \mathbb{Z}^{+}, a b \in \mathbb{O} . \tag{1}
\end{equation*}
$$

(a) Express the given statement (1) in words.
(b) Express the negation of the given statement (1) in symbols. (Do NOT use the symbol \notin.)
(c) Express the negation of the given statement (1) in words.
3. Consider the following statement:

$$
\text { "If } \sqrt{3}<\sqrt{7} \text {, then } 3<7 \text {." }
$$

Write in a useful form
(a) the converse;
(b) the contrapositive;
(c) the converse of contrapositive;
(d) the contrapositive of converse.
4. Prove the following statement:

```
' Let \(n \in \mathbf{Z}\). Then \(n\) is odd if and only if \(11 n-7\) is even.',
```

5. Prove the statement "If n is an even integer, then $5 n+11$ is odd." by
(a) a direct proof;
(b) a proof by contrapositive;
(c) a proof by contradiction.
[^0]
[^0]: ${ }^{1}$ Hint: see Proposition 37 in the Lecture Notes

