Math 220 - Homework 3

Due Thursday $2 / 07$ at the beginning of class

Total points: 164 (Writing portion 140 pts) (Problems marked by $*$ will count toward writing portion.)

1. [6 points] Consider the following definition:

A real-valued function $f(x)$ is said to be one to one if for all $x_{1}, x_{2} \in \mathbb{R}$, if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

Write the negation of this definition completing the following: "A real-valued function $f(x)$ is said to be not one to one if ..."
2. Consider the following definition:

A real-valued function $f(x)$ is said to be decreasing on the closed interval $[a, b]$, if for all $x_{1}, x_{2} \in[a, b]$, if $x_{1}<x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$.
(a) [6 points] Write the negation of this definition completing the following: "A real-valued function $f(x)$ is said to be not decreasing on the closed interval $[a, b]$, if ..."
(b) [6 points] Give an example of a function that is decreasing on the interval $[1,3]$ and based on the above definition explain why your example is correct.
(c) [6 points] Give an example of a function that is not decreasing on the interval $[1,3]$ and based on the negation of the above definition explain why your example is correct.
3. ${ }^{*}[10$ points $]$ Let $x, y, z \in \mathbf{R}$. Prove that if $\sin \left(x^{2}+2 y^{4}+3 z^{6}\right)<\frac{1}{3}$, then $x^{2}+2 y^{4}+3 z^{6}+\frac{1}{3} \neq 0$.
4. * $[10$ points $]$ Let $x \in \mathbf{R}^{+}$. Prove that if $\sin (x+3) \geq 3$, then $x^{2019} \geq 2019$.
5. * [10 points] Prove that the product of every two odd integers is odd. (Give a formal proof.)
6. * [10 points] Prove that the sum of every three consecutive integers is divisible by 3. (Give a formal proof.)
7. * [10 points] Prove that for every natural number $n, 20 n^{2}-6^{n}-3$ is odd. (Give a formal proof. Don't use proof by cases!)
8. *[10 points] Prove that for every integer x, the integers $13 x-11$ and $17 x+2$ are of opposite parity.
9. * [30 points] Let a and b be integers. Give the formal proof for following statements.
(a) If $a \mid b$, then $a \mid\left(b^{4}-b^{2}+5 b\right)$.
(b) For every $n \in \mathbb{N}$, if $a \mid b^{n}$, then $a \mid\left(b^{3 n}+b^{2 n}-b^{n}\right)$.
(c) If $a^{2} \mid a$, then $a \in\{-1,0,1\}$.
10. * [50 points] Prove or disprove the following statements:
(a) For every integer n, if n is divisible by 2 and n is divisible by 6 , then n is divisible by 12 .
(b) There exists an odd integer n such that $n^{2}+2 n+3$ is odd.
(c) If $x, y \in \mathbb{R}$, then $|x-y|=|x|-|y|$.
(d) Let $a, b \in \mathbb{Z}$. If $a \mid b$ and $b \mid a$, then $a=b$.
(e) There exists an even number n such that n^{2} is odd.

