Math 220 - Homework 4

Due Thursday $2 / 14$ at the beginning of class

Total points: 110 (Writing portion 110 pts) (Problems marked by $*$ will count toward writing portion.) PART A

Problems from the textbook:

- Section 2.2 | problem | 3^{*} | 5^{*} |
| :---: | :---: | :---: |
| points | 10 | 10 |

1. ${ }^{*}[10$ points $]$ Let $x \in \mathbb{Z}$. Prove that if $7 x+5$ is odd, then x is even.
2. *[10 points $]$ Let $x, y \in \mathbb{Z}$. Prove that if $3 x+7 y$ is even, then x and y are of the same parity.
3. ${ }^{*}[10$ points $]$ Let $a, b, c \in \mathbb{Z}$. Prove that if $a \nmid b c$, then $a \nmid b$ and $a \nmid c$.
4. * $[10$ points $]$ Prove that if a and b are odd integers, then $4 X\left(a^{2}+b^{2}\right)$.
5. * [10 points] Prove that if x is an integer, then x^{3} has the same parity as x.
6. (a) * [10 points $]$ Let $n \in \mathbb{Z}$. Prove that if $2 \mid\left(n^{2}-5\right)$, then $4 \mid\left(n^{2}-5\right)$.
(b) [5 points] Give an example of an integer n such that $2 \mid\left(n^{2}-5\right)$, but $8 \times\left(n^{2}-5\right)$
7. Consider the statement:
"If the product of two integers is even, then at least one of these integers is even."
(a) [5 points] Rewrite the statement in symbols.
(b) * [10 points $]$ Give a formal proof.
8. * $[10$ points $]$ Let a be a positive real number. Prove that there is a unique positive real number x such that $x^{4}-a^{4}=0$.
