Math 220(HNR) - Homework 5

Due Thursday 02/23 at the beginning of class

$$
\text { Total points }=210
$$

PART A

Problems from the textbook:
Section 1.4 \# 17 [10 points], 21 [10 points]
Section 5.2 \# 3 [10 points]; 2(b) [10 points]; 4(b) [10 points].

PART B

1. [12 points] Prove that the equation $x^{5}+2 x-5=0$ has a unique real number solution between $x=1$ and $x=2$.
2. [10 points] Prove that the equation $\sin ^{2016}(x)-4 x+\pi=0$ has a real number solution between $x=0$ and $x=4$. (You may assume that $\sin ^{2016}(x)$ is continuous on $[0,4]$.)
3. [12 points] Let $a, b, c \in \mathbf{Z}$. Determine the truth or falsehood of the following statements. If the statement is true, prove it; otherwise, provide a counterexample.
(a) If $a \mid c$ and $b \mid c$, then $a b \mid c$.
(b) If $a \mid b$ and $b \mid a$ then $a=b$.
4. [10 points] Prove the following statement: "No odd integer can be expressed as the sum of three even integers."
5. [14 points] Suppose $n \in \mathbf{Z}$. Prove that $15 \mid n$ if and only if $5 \mid n$ and $3 \mid n$.
6. [10 points] Assume that $x, y \in \mathbf{Z}$. Prove that if $x+y$ is odd, then $x^{2}+y^{2}$ is odd.
7. Prove by induction that for every positive integer n the following statements hold:
(a) [10 points] $n^{3}+2 n$ is divisible by 3 . (Hint: $(a+b)^{3}=a^{3}+b^{3}+3 a^{2} b+3 a b^{2}$)
(b) $[10$ points $] \frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{(n+1)(n+2)}=\frac{n}{2(n+2)}$.
(c) $[10$ points $] 7 \mid\left(2^{3 n}-1\right)$.
(d) $[10$ points $] 3$ is a factor of $7^{n}-4^{n}$.
8. [10 points] Disprove the following statement:

There exist odd integers a and b such that $4 \mid\left(7 a^{2}-b^{2}\right)$.
9. Prove the statement " If n is an odd integer, then $27 n+5$ is even.'" by
(a) [6 points] a direct proof;
(b) $[7$ points $]$ a proof by contrapositive;
(c) $[7$ points $]$ a proof by contradiction.
10. [10 points] Use proof by contradiction to prove that if a and b are odd integers, then $4 X\left(a^{2}+b^{2}\right)$.
11. [12 points] Let $x, y \in \mathbf{R}$. Proof that if $x y \neq 0$, then $x \neq 0$ by using more than one method of proof.

