Math 220 - Homework 6

Due Thursday $2 / 28$ at the beginning of class

Total points: 182
(Writing portion 45 pts)

PART A

Problems from the textbook:

- Section 4.1 \begin{tabular}{|c|c|c|c|c|}
\hline problem \& $1(\mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{g}, \mathrm{j})$ \& 4^{*} \& 5^{*} \& 6^{*}

\hline \& points \& 20 \& 10 \& 10

 1^{10}

\cline { 2 - 6 }
\end{tabular}

PART B

1. [10 points] Which of the following sets are equal? Justify your answers.

$$
\begin{gathered}
A=\{n \in \mathbb{Z}| | n \mid<2\}, \quad B=\left\{n \in \mathbb{Z} \mid n^{3}=n\right\}, \quad C=\left\{n \in \mathbb{Z} \mid n^{2} \leq n\right\}, \\
D=\left\{n \in \mathbb{Z} \mid n^{2} \leq n\right\}, \quad E=\{-1,0,1\}, \quad F=\{t \in \mathbb{Z}| | t \mid<2\}
\end{gathered}
$$

2. [18 points] Let $U=\{a, 3 a, 5 a, \ldots, 15 a\}$ be the universal set and let $A=\{a, 5 a, 9 a, 13 a\}$, and $B=$ $\{3 a, 9 a, 15 a\}$. Determine the following:
(a) $\bar{A} \cup B$
(b) $A \cap B$
(c) $A-B$
(d) $B-A$
(e) $\bar{A} \cap \bar{B}$.
3. [10 points] Let A, B and C be nonempty subsets of a universal set U. Draw a Venn diagram for each of the following set operations.
(a) $B \cup(A-C)$
(b) $A \cap(C-B)$
4. * [15 points] Let A, B, and C be nonempty subsets of a universal set U. Disprove the following statements:
(a) If $A \cap B=A \cap C$, then $B=C$.
(b) If $A-B=C-B$, then implies $A=C$.
(c) If A is not a subset of B and B is not a subset of A, then $A \cap B=\emptyset$.
5. [9 points] Describe the following sets by listing their elements.
(a) The set of all reminders when a positive integer is divided by 7 .
(b) The set of all integers of absolute value less or equal than 2 .
(c) $A=\left\{x \in \mathbb{R} \mid x^{3}-x=0\right\}$
6. [12 points] Describe the following sets by listing enough elements to indicate a pattern for all elements of the set.
(a) The set of all reminders when a natural number is divided by 2018.
(b) The set of all numbers x for which $\tan x$ is undefined.
(c) $A=\{3 q+1 \mid q \in \mathbb{Z}\}$
7. [6 points] Describe the following sets using a set-builder notation. Namely, write them in the form $\{x \in D \mid \ldots\}$ for the appropriate set D.
(a) The set of all rational numbers between 0 and 1 inclusive.
(b) The set of all numbers x for which $\tan x=0$.
8. [12 points] Let $U=\mathbb{R}$ be the universal set. Consider $A=\{x \in \mathbb{R}| | 2 x+3 \mid \geq 19\}$ and $B=\{x \in \mathbb{R}| | x \mid \leq 3\}$.
(a) Express the sets A and B using interval notation (as an interval or a union of intervals).
(b) Determine $\bar{A} \cap \bar{B}$ as an interval or a union of intervals.
9. [10 points] Given $A=\{x \in \mathbb{Z}| | x \mid>10\}$. Compute the compliment of A, if (a) $U=\mathbb{Z} \quad$ (b) $U=\mathbb{R}$.
10. [10 points] Given $A=\{x \in \mathbb{R}| | x \mid>10\}$ and $B=\{x \in \mathbb{R}|0<|x| \leq 12\}$. Compute $A-B$ and $B-A$.
11. [20 points] Assume that A and B are sets and P and Q are propositions. Characterize the following expressions as either
(i) a proposition/statement
(ii) not a proposition/statement, but an expression that makes sense mathematically.
(iii) an expression that makes no sense mathematically.
(Write i, ii, or iii as an answer for each item.)
(a) $\mathrm{i} / \mathrm{ii} / \mathrm{iii} ~(A \cap B) \subset \bar{A}$
(b) $\mathrm{i} / \mathrm{ii} / \mathrm{iii} \quad B \Rightarrow A$
(c) $\mathrm{i} / \mathrm{ii} / \mathrm{iii} \quad(A \subset B) \Rightarrow Q$
(d) $\mathrm{i} / \mathrm{ii} / \mathrm{iii} \quad P \subseteq Q$
(e) $\mathrm{i} / \mathrm{ii} / \mathrm{iii} \quad P=Q$
(f) $\mathrm{i} / \mathrm{ii} / \mathrm{iii} B \cap A-B$
(g) i/ ii $/ \mathrm{iii} \quad P \cap Q$
(h) i/ ii $/ \mathrm{iii} \quad A+B$
(i) i/ ii $/ \mathrm{iii} \quad(\exists x \in P)[x \in A \cup B]$
(j) $\mathrm{i} / \mathrm{ii} / \mathrm{iii} A \vee B$
