Math 220 – Homework 6

Due Thursday 2/28 at the beginning of class

Total points: 182

(Writing portion 45 pts)

PART A

Problems from the textbook:

•	Section 4.1	problem	1(a,b,d,g,j)	4*	5^{*}	6*
		points	20	10	10	10

PART B

1. [10 points] Which of the following sets are equal? Justify your answers.

$$A = \{n \in \mathbb{Z} | |n| < 2\}, \quad B = \{n \in \mathbb{Z} | n^3 = n\}, \quad C = \{n \in \mathbb{Z} | n^2 \le n\},$$
$$D = \{n \in \mathbb{Z} | n^2 \le n\}, \quad E = \{-1, 0, 1\}, \quad F = \{t \in \mathbb{Z} | |t| < 2\}$$

- 2. [18 points] Let $U = \{a, 3a, 5a, \dots, 15a\}$ be the universal set and let $A = \{a, 5a, 9a, 13a\}$, and $B = \{3a, 9a, 15a\}$. Determine the following:
 - (a) $\overline{A} \cup B$ (b) $A \cap B$ (c) A B (d) B A (e) $\overline{A} \cap \overline{B}$.
- 3. [10 points] Let A, B and C be nonempty subsets of a universal set U. Draw a Venn diagram for each of the following set operations.

(a) $B \cup (A - C)$ (b) $A \cap (C - B)$

- 4. * [15 points] Let A, B, and C be nonempty subsets of a universal set U. Disprove the following statements:
 - (a) If $A \cap B = A \cap C$, then B = C.
 - (b) If A B = C B, then implies A = C.
 - (c) If A is not a subset of B and B is not a subset of A, then $A \cap B = \emptyset$.
- 5. [9 points] Describe the following sets by listing their elements.
 - (a) The set of all reminders when a positive integer is divided by 7.
 - (b) The set of all integers of absolute value less or equal than 2.
 - (c) $A = \{x \in \mathbb{R} | x^3 x = 0\}$
- 6. [12 points] Describe the following sets by listing enough elements to indicate a pattern for all elements of the set.
 - (a) The set of all reminders when a natural number is divided by 2018.
 - (b) The set of all numbers x for which $\tan x$ is undefined.
 - (c) $A = \{3q+1 | q \in \mathbb{Z}\}$
- 7. [6 points] Describe the following sets using a set-builder notation. Namely, write them in the form $\{x \in D | \ldots\}$ for the appropriate set D.
 - (a) The set of all rational numbers between 0 and 1 inclusive.

- (b) The set of all numbers x for which $\tan x = 0$.
- 8. [12 points] Let $U = \mathbb{R}$ be the universal set. Consider $A = \{x \in \mathbb{R} | |2x+3| \ge 19\}$ and $B = \{x \in \mathbb{R} | |x| \le 3\}$.
 - (a) Express the sets A and B using interval notation (as an interval or a union of intervals).
 - (b) Determine $\overline{A} \cap \overline{B}$ as an interval or a union of intervals.
- 9. [10 points] Given $A = \{x \in \mathbb{Z} | |x| > 10\}$. Compute the compliment of A, if (a) $U = \mathbb{Z}$ (b) $U = \mathbb{R}$.
- 10. [10 points] Given $A = \{x \in \mathbb{R} | |x| > 10\}$ and $B = \{x \in \mathbb{R} | 0 < |x| \le 12\}$. Compute A B and B A.
- 11. [20 points] Assume that A and B are sets and P and Q are propositions. Characterize the following expressions as either
 - (i) a proposition/statement
 - (ii) not a proposition/statement, but an expression that makes sense mathematically.
 - (iii) an expression that makes no sense mathematically.

(Write i, ii, or iii as an answer for each item.)

(j)