Math 220 - Homework 7

Due Thursday 03/23 at the beginning of class
Total points=197

PART A

Problems from the textbook:
Section 2.1 \# 7(e, f, h) $15 \mathrm{pts} ; 8(\mathrm{~b}, \mathrm{c}, \mathrm{d}) 15 \mathrm{pts} ; 19(\mathrm{~b}, \mathrm{c}) 10 \mathrm{pts} ; 20(\mathrm{c}, \mathrm{f}) 10 \mathrm{pts}$.
Section 2.2 \# 4(b, e) 6pts ; 5(b, e) 6pts ; 6 16pts, 2622 pts
Section 2.3 \# 2 $8 \mathrm{pts}, 4(\mathrm{a}, \mathrm{b}, \mathrm{c}) 14 \mathrm{pts}, 5(\mathrm{~b}, \mathrm{c}, \mathrm{e}, \mathrm{f}) 8 \mathrm{pts}$.

PART B

1. For the sets $A=\{x \in \mathbb{Z} \mid 2 \leq x<4\}$ and $B=\left\{x \in \mathbb{R} \mid x^{4}=1\right\}$ form the following Cartesian products:
(a) $4 \mathrm{pts} B \times A$
(b) $8 \mathrm{pts} B \times A \times B$.
2. 14pts Let A, B, and C be nonempty sets. Determine the truth or falsehood of the following statements. (Write TRUE or FALSE for each statement.)
(a) $A-A=\emptyset$.
(b) $A \subset A$.
(c) $A \cup(B \cap C)=(A \cap C) \cup(B \cap C)$.
(d) $A \cup A=A \cap A$ for all sets A.
(e) If $|A|=|B|$ then $A \times B=B \times A$.
(f) $A \times B=B \times A$ for all nonempty sets A and B.
(g) If $\{1\} \in P(A)$, then $1 \in A$ and $\{1\} \notin A$.
3. 10pts Let $A=\{x \in \mathbb{N} \mid 1 \leq x<5\}$ and $P(A)$ be a power set of A. Determine the truth or falsehood of the following statements. (Write TRUE or FALSE for each statement.)
(a) $A \subset P(A)$.
(b) $\{2\} \in P(A)$.
(c) $[3,4] \subseteq A$.
(d) $|P(A)|=32$
(e) $\emptyset \subseteq P(A)$ and $\emptyset \in P(A)$.
4. 8pts Let $U=\mathbb{R}$ be the universal set. Consider $A=\{x \in \mathbb{R}| | 2 x+3 \mid \geq 19\}$ and $B=\{x \in \mathbb{R}| | x \mid \leq 3\}$.
(a) Express the sets A and B using interval notation (as an interval or a union of intervals).
(b) Determine $\bar{A} \cap \bar{B}$ as an interval or a union of intervals.
5. 15pts Let $U=\{x, y, 1,2,3\}$ be the universal set and let $A=\{x, y, 1,2\}, B=\{2,3\}, C=\{1,3, x, y\}$. Determine the following (show all intermediate steps):
(a) $\bar{A} \cup(B \cap C)$
(b) $\overline{B \cup C} \cap U$
(c) $\overline{(A \cup B)-(B \cap C)}$
6. 8pts Find $|A|$, where $A=\{(x, y) \in \mathbf{Z} \times \mathbf{Z}| | x|+|y|=3\}$.
