Math 220 – Homework 8

Due Thursday 03/30 at the beginning of class

Total points=155

PART A

Problems from the textbook:

Section	2.2	# 15	$\mathbf{b}(\mathbf{a})$ 10	pts	, 17(a)) $10 \text{pts}, 23$	B 10pts	s], 2	25(b)	10pts
Section	3.1	#1	10pts	, 2	10pts	, 3(a,b,d,f)	20pts	, 7	5pts]

PART B

1. Let A, B, and C be nonempty sets. Prove the following statements.

(a)
$$|10\text{pts}| A \times (B \cap C) = (A \times B) \cap (A \times C)$$

- (b) 10pts $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D).$
- (c) 10pts If $A \subseteq B$, then $A \cup C \subseteq B \cup C$.
- (d) 10pts $A \times (B C) = (A \times B) (A \times C)$. (Hint: $(x \in A) \land (y \notin B) \Rightarrow ((x, y) \notin A \times B.)$)
- 2. |10pts | Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2016 4x. Prove that $Imf = \mathbb{R}$.
- 3. 10pts Let $f \in F(\mathbb{R})$ be defined by $f(x) = -x^{2n}$, where $n \in \mathbb{Z}^+$, and $S = \{y \in \mathbb{R} \mid y \leq 0\}$. Prove that Imf = S.
- 4. Let $f: \mathbb{Z} \to \mathbb{R}$ and let $g: \mathbb{Z} \to \mathbb{R}$ be defined by $f(n) = \cos(\pi n)$ and $g(n) = (-1)^n$.
 - (a) 5pts Find Im(f) and Im(g) and represent your answers using roster notation. (No formal proofs are necessary).
 - (b) 5pts Find graphs G_f and G_g and show that $G_f = G_g$.