Math 220 – Homework 9 HNR

Due Thursday 11/08 at the beginning of class

Total points: 224

PART A

Problems from the textbook: p.236 # 9.38 [8 points]

PART B

- 1. [10 points] For a real number r, define S_r to be the interval [r-1, r+2]. Let $A = \{1, 3, 4\}$. Write the sets $\bigcup_{\alpha \in A} S_{\alpha}$ and $\bigcap_{\alpha \in A} S_{\alpha}$ in a simpler form (as either an interval or a finite set of points). Show all steps leading to your final answer.
- 2. [10 points] Let $K = \{a, b, c\}, L = \{b, d, e\}, M = \{b, e, f\}$ and $S = \{K, L, M\}$. Write the sets $\bigcup_{X \in S} X$ and

 $\bigcap_{X \in S} X \text{ in a simpler form (as either an interval or a finite set of points). Show all steps leading to your final answer.}$

3. [30 points] Let $i \in \mathbb{Z}$ and $A_i = \{i - 1, i + 1\}$. Write the following sets in a simpler form (as either an interval or a finite set of points). Show all steps leading to your final answer.

(a)
$$\bigcup_{i=1}^{5} A_{2i}$$
 (b) $\bigcup_{i=1}^{250} A_{2i}$ (c) $\bigcup_{i=1}^{5} (A_i \cap A_{i+1})$ (d) $\bigcup_{i=1}^{250} (A_i \cap A_{i+1})$ (e) $\bigcup_{i=1}^{5} (A_{2i-1} \cap A_{2i+1})$
(f) $\bigcup_{i=1}^{250} (A_{2i-1} \cap A_{2i+1})$

- 4. [15 points] Repeat the previous problem for $A_i = [i 1, i + 1]$.
- 5. [15 points] Given $I = \{1, 2, 3, ..., 2018\}$. For each $i \in I$ define $B_i = \{i, i+1\}$. Write the following in a simpler form (as either an interval or a finite set of points). Show all steps leading to your final answer.

(a)
$$\bigcap_{i \in I} B_i$$
 (b) $\bigcap_{i=j}^{j+1} B_i$ (c) $\bigcup_{i=j}^{k} B_i$, where $1 \le j < k \le 2018$

- 6. Let $A = \{x, y, z, u, v\}, B = \{a, b, c, d\}$, and $C = \{5, 6, 7, 8, 9\}$.
 - (a) [9 points] Write out three functions with domain A and codomain B making at least one of the functions have the property that its range coincides with its codomain (represent all functions by their graphs (see Definition 3 in notes)).
 - (b) [9 points] Write out two functions with domain B and codomain C(represent all functions by their graphs (see Definition 3 in notes)). Explain why you cannot define a function between these two sets for which the range equals its codomain.
- 7. * [10 points] Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2018 4x. Prove that ran $f = \mathbb{R}$.
- 8. * [10 points] Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^4$ and $S = \{y \in \mathbb{R} | y \ge 0\}$. Prove that ranf = S.

9. Let
$$X = \{x \in \mathbb{R} | x \neq -5\}$$
 and $f: X \to \mathbb{R}$ be defined by $f(x) = \frac{3x-1}{x+5}$.

- (a) [5 points] Determine the range of f.
- (b) * [10 points] Prove that your answer for ran f is correct.
- 10. Express each of the following functions as a composition $f = g \circ h$. Be sure to give appropriate sets A, B, and C such that $h : A \to B$ and $g : B \to C$. Note that neither g nor h should be an identity functions, but there may be many possible answers.
 - (a) [7 points] $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sqrt[3]{e^{x^3} + 8}$
 - (b) [7 points] $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \ln(x^2 + 1)$
 - (c) [7 points] $f : \mathbb{Z} \to \mathbb{R}$ defined by $f(x) = \sin(\pi x + 1)$
- 11. * [10 points] Determine whether the function $f : \mathbb{Z} \to \mathbb{Z}$ defined by $f(n) = \begin{cases} 2n, & \text{if } n \in \mathbb{E} \\ -n+22, & \text{if } n \in \mathbb{O} \end{cases}$ is surjective. Give a formal proof of your answer.
- 12. [32 points] Find $\bigcup_{i \in I} A_i$ and $\bigcap_{i \in I} A_i$ if (a) $I = \mathbb{Z}^+$ and $A_i = (-i, i)$. (b) $I = \{2, 3, 4, 5, ...\}$ and $A_i = [\frac{1}{i}, i)$. (c) $I = \mathbb{Z}^+$ and $A_i = [0, 1 - \frac{1}{i}]$. (d) $I = \mathbb{Z}^+$ and $A_i = [1 - \frac{1}{i}, 3 - \frac{1}{i})$. 13. [10 points] Find $f \circ g$ if $f, g : \mathbb{Z} \to \mathbb{Z}$ by f(n) = 2n + 3 and $g(n) = \begin{cases} 2n - 1, & \text{if } n \in \mathbb{E} \\ n + 1, & \text{if } n \in \mathbb{O} \end{cases}$
- 14. [10 points] Let $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = \begin{cases} x^2 & \text{if } x \ge 0 \\ x 2 & \text{if } x < 0 \end{cases}$ and $g : \mathbb{R} \to \mathbb{R}$ by $g(x) = \begin{cases} x + 3 & \text{if } x \ge 4 \\ 2x & \text{if } x < 4 \end{cases}$ Find $f \circ g$.