Math 220 – Homework 9

Due Thursday 3/28 at the beginning of class

Total points: 148

(Writing portion 115 pts)

PART A

Problems from the textbook:

- Section 5.2 $\begin{array}{c|c|c|c|c|c|c|c|c|} problem & 1(a) & 1(b) & 2\\ \hline points & 8 & 10 & 10 \\ \end{array}$
- Section 5.3 # 3(a,c)* [40 points]

PART B

- 1. * [10 points] Let $f, g : \mathbb{R} \to \mathbb{R}$ are defined by $f(x) = 2x^2 1$ and g(x) = 3x + 5. Determine $(g \circ f)(1)$ and $(f \circ g)(1)$.
- 2. * [10 points] Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 3x 2019. Prove that ran $f = \mathbb{R}$.
- 3. * [10 points] Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 6x^6$ and $S = \{y \in \mathbb{R} | y \ge 0\}$. Prove that ranf = S.
- 4. * [5 points] Let $f: [-1,\infty] \to \mathbb{R}$ be defined by $f(x) = \sqrt[4]{1+x}$ and $S = [0,\infty)$. Prove that $S \subseteq \operatorname{ran} f$.

5. Let $X = \{x \in \mathbb{R} | x \neq -5\}$ and $f : X \to \mathbb{R}$ be defined by $f(x) = \frac{3x-1}{x+5}$.

- (a) [5 points] Determine the range of f.
- (b) * [10 points] Prove that your answer for ran f is correct.
- 6. * [20 points] A function $f: \mathbb{Z} \to \mathbb{Z}$ is defined by f(n) = 7n + 3. Prove or disprove the following:
 - (a) f is injective.
 - (b) f is surjective.
- 7. * [10 points] Determine whether the function $f : \mathbb{Z} \to \mathbb{Z}$ defined by $f(n) = \begin{cases} 2n, & \text{if } n \in \mathbb{E} \\ -n+22, & \text{if } n \in \mathbb{O} \end{cases}$ is surjective. Give a formal proof of your answer.