\qquad FIRST NAME : \qquad
UIN: \qquad SEAT\#: \qquad

DIRECTIONS:

- The use of a calculator, laptop or computer is prohibited.
- In all problems present your solutions in the space provided.
- Be sure to read the instructions to each problem carefully.
- Use a pencil and be neat. If I can't read your answers, then I can't give you credit.
- Show all your work and clearly indicate your final answer. You will be graded not merely on the final answer, but also on the quality and correctness of the work leading up to it.
- SCHOLASTIC DISHONESTY WILL NOT BE TOLERATED.

THE AGGIE CODE OF HONOR
"An Aggie does not lie, cheat or steal, or tolerate those who do."
Signature: \qquad

Good Luck!

DO NOT WRITE BELOW!

1. Given

$$
\iint_{D} f(x, y) \mathrm{d} A=\int_{-6}^{-2} \int_{0}^{x+6} f(x, y) \mathrm{d} y \mathrm{~d} x+\int_{-2}^{0} \int_{0}^{x^{2}} f(x, y) \mathrm{d} y \mathrm{~d} x
$$

(a) sketch the region of integration D.

(b) change the order of integration.

WRITE YOUR ANSWER HERE:
2. Find the mass of the lamina that occupies the region $D=\left\{(x, y): x^{2}+y^{2} \leq 2 x, y \geq 0\right\}$ and has the density $\rho(x, y)=y$.
3. Find the volume of the paraboloid $z=x^{2}+y^{2}$ below the paraboloid $z=8-3\left(x^{2}+y^{2}\right)$.
4. Let $f(x, y)=3 y-2 x y+1$. Find the absolute maximum and minimum values of f on the region D bounded by the curves $y=x^{2}$ and $y=3 x$.
5. Find an equation for the tangent plane to the ellipsoid $2 x^{2}+y^{2}+z^{2}=4$ at the point $(1,1,1)$.
6. Given $z=\frac{16}{\sqrt{y-x^{2}}}$.
(a) Find the gradient of the given function.
(b) Find the maximum rate of change of the function at the point $(2,8)$.
(c) Find the directional derivative of the given function at the point $(2,8)$ in the direction of the vector $\mathbf{u}=\langle 4,-3\rangle$.
(d) Find the direction in which the maximum rate of change of the function at the point $(8,2)$ occurs.
7. Given the function $f(x, y)=\left(x^{2}+y^{2}\right) e^{x}-2011$.
(a) Locate the critical points.
(b) Classify the critical points of f (i.e. local maximum, local minimum or saddle).

