DIFFERENTIALS: LINEAR AND QUADRATIC APPROXIMATION

By Kenny Abitbol, Sam Mote, and Evan Kirkland

Introduction of Linear Approximation

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

- a : point whose tangent line as an approximation of the function
- x : point whose value is being approximated
- If $f(x)$ is concave up after $x=a$, the approximation will be an underestimate, and if it is concave down, it will be an overestimate

Linear approximation of $f(x)=\cos x^{-4}$ at $a=0$.

Definition of Linear Approximation

"The equation of the tangent line to the curve $y=f(x)$ at ($a, f(a)$) is

$$
y=f(a)+f^{\prime}(a)(x-a)
$$

so...the tangent line at $P(a, f(a))$ [is] an approximation to the curve $y=f(x)$ when x is near a.

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

is called the linear approximation or tangent line approximation of f at a."

Introduction of Quadratic Approximation

$$
Q(x)=f(a)+f^{\prime}(a)(x-a)+\left(\frac{1}{2}\right) f^{\prime \prime}(a)(x-a)^{2}
$$

or

$$
Q(x)=L(x)+\left(\frac{1}{2}\right) f^{\prime \prime}(a)(x-a)^{2}
$$

Definition of Quadratic Approximation

The quadratic approximation also uses the point $x=a$ to approximate nearby values, but uses a parabola instead of just a tangent line to do so.

This gives a closer
approximation because the parabola stays closer to the

History: Taylor's Theorem

Linear and Quadratic approximations are based off of Taylor's theorem of polynomials. The theorem is named after $18^{\text {th }}$ century mathematician Brook Taylor who designed a general formula for approximating the values of functions after a small change of the x-value. The formula was first published in 1712. His theorem is:

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(k)}(a)}{k!}(x-a)^{k},
$$

where \mathbf{a} is a reference point, \mathbf{x} is the nearby value being approximated, and \mathbf{k} is the maximum amount of times the original function can be derived.

History: Differentials

- Began in 1680's
- Bernouli brothers
- Gottfried Wilhelm Leibniz
- Applied to geometry and mechanics

Producing Along Standards

A company requires that the bowling balls that it creates have a volume in the range of $4170-4200 \mathrm{~cm}^{3}$. If the radii of the balls are produced to be 10 cm and have an error of .01 cm , will the company be able to produce along these standards?

Error Calculation with Linear Approximation

$V=\frac{4}{3} \pi r^{3}$
$L(x)=f(a)+f^{\prime}(a)(x-a)$
$\frac{d V}{d r}=4 \pi r^{2}$
$f(x)=f(a)+f^{\prime}(a)(x-a)$
$\frac{d V}{d r}=4 \pi 10^{2}$

$$
f(x)-f(a)=f^{\prime}(a)(x-a)
$$

$$
\Delta y=f^{\prime}(a) \Delta x
$$

Error Calculation with Linear Approximation

Now using the formula $\Delta V=\frac{d V}{d r} \Delta r$
$\frac{d V}{d r}=400 \pi$
$\Delta r=0.01$
$\Delta V=400 \pi(.01)=12.57 \mathrm{~cm}^{3}$
$V(10)=\frac{4}{3} \pi 10^{3}=4188.79 \mathrm{~cm}^{3}$

Analysis

We found that the volume of the perfectly created ball would be $4188.79 \mathrm{~cm}^{3}$ with a deviation of $\pm 12.57 \mathrm{~cm}^{3}$. This creates a range of $4176.22-4201.26 \mathrm{~cm}^{3}$, which does not fit with the desired range of $4170-4200 \mathrm{~cm}^{3}$. The company will not be able to produce along these standards.

Surface Area Errors

In the design of a waterpark fountain like the one shown below, the cost of paint is important. With the paint costing $\$ 0.25 /$ inches 2, what would the relative error in surface area be if the radius of the circle has an error of
$\pm .75$ inches?What would be the variation in price? Take the inner radius to be $\frac{R}{4}$,
the radius of the circle to be 37 inches,
 and the height to be 2 R .

Modifying the Linear Approximation Formula

$$
L(x)=f(a)+f^{\prime}(a)(x-a) \rightarrow \Delta y=\frac{d y}{d x} \Delta x
$$

Adding up the surface areas:
Sphere: $2 \pi R^{2}$
Bottom of sphere: $\pi R^{2}-\pi\left(\frac{R}{4}\right)^{2}$
Cylinder: $\pi\left(\frac{R}{4}\right)^{2}+2 \pi \frac{R}{4} 2 R$ (top of cylinder doesn't matter)
Surface Area $=4 \pi R^{2}$
Proposed Area $=4 \pi(37)^{2}$

$$
=17,203.36 \text { inches }^{2}
$$

Error in Surface Area

Surface Area Error : $\Delta R=.75$ inches

Now take the derivative of the surface area formula, with respect to the radius of the hemisphere. $\left(A(R)=4 \pi R^{2}\right)$

$$
\frac{d A}{d R}=8 \pi R
$$

Error in Surface Area

$$
\Delta A_{R}=\frac{d A}{d R} \Delta R \rightarrow 8 \pi(37)(.75)=697.43 \text { inches }^{2}
$$

error $_{\text {relative }}=\frac{\Delta A}{A}=\frac{697.43}{17203.36}=\underline{0.0405}$
Δ price $=(697.43)(0.25)=\$ 174.36$

Analysis

The small error in the radius of the sphere can cause a substantial change in cost.

The cost of painting the structure: Cost $=\operatorname{Cost}_{0} \pm \Delta$ Cost Cost $_{0}=(17203.36)(.25)=\$ 4300.84$
Δ Cost $=\$ 174.36$
Cost $=\$(4300.84 \pm 174.36)$

Percent Error of R: $\quad \frac{.75}{37} \times 100=2.03 \%$
Percent Error of A: $\frac{697.43}{17203.36} \times 100=4.05 \%$

Oscillation with Differentials

The water level in an artificial pond, which has both a constant drainage, due to absorption and evaporation, and a periodically active source, over a given 24 -hour period is given by the approximation

$$
h(x)=5 \sin \left(\frac{x}{2}\right)+25,
$$

where h is given in ft. This equation was the result of taking measurement tests every 30 minutes. That leaves the depth at many other times indefinite, but assumable. Given that $x=0$ is midnight, $x=1$ is 1:00 A.M., and so on, what would the depth have been at 11:03 A.M.?

Oscillation with Differentials

The first thing to do is identify given values.

$$
h(x)=5 \sin \left(\frac{x}{2}\right)+25, \quad a=11, \quad \text { and }
$$

$x=11+\left(\frac{3}{60}\right)$ or 11.05 .
And we know that the linear and quadratic approximation formulas are

$$
\begin{gathered}
L(x)=h(a)+h^{\prime}(a)(x-a) \text { and } \\
Q(x)=L(x)+\frac{h^{\prime \prime}}{2}(x-a)^{2}
\end{gathered}
$$

Oscillation with Differentials

Now we plug in values and solve where we can. So if $h(x)=5 \sin \left(\frac{x}{2}\right)+25$, then $h^{\prime}(x)=2.5 \cos \left(\frac{x}{2}\right)$. Now :
$L(11.05)=h(11)+h^{\prime}(11)(11.05-11) \quad \rightarrow$
$L(11.05)=21.472+(1.772)(.05) \rightarrow$
$L(11.05)=21.5606$

So according to the linear approximation, at 11:03, the water's depth was 21.5606 ft .

Oscillation with Differentials

Now to find the depth of the water according to a quadratic approximation, we need $h^{\prime \prime}(x)$. So if

$$
h^{\prime}(x)=2.5 \cos \left(\frac{x}{2}\right),
$$

then

$$
h^{\prime \prime}(x)=-1.25 \sin \left(\frac{x}{2}\right) .
$$

Oscillation with Differentials

Now:
$Q(11.05)=L(11.05)+\frac{h^{\prime \prime}(11)}{2}(11.05-11)^{2} \rightarrow$
$Q(11.05)=21.5606+\left(\frac{.882}{2}\right)(.05)^{2} \rightarrow$
$Q(11.05)=21.5617$

So now according to the quadratic approximation, the depth of the water was 21.5617 ft .

Oscillation with Differentials: Analysis

When $x=11.05$ is plugged into the original equation, the depth is 21.5620 ft . To calculate error for the Linear approximation it is

$$
\frac{|h(11.05)-L(11.05)|}{h(11.05)},
$$

which is an error of 0.0065%. For the Quadratic approximation error it is

$$
\frac{|h(11.05)-Q(11.05)|}{h(11.05)}
$$

which is an error of $.0014 \%$. So while both approximations have very low error, the Quadratic approximation is even more accurate.

Visual Map

Common Mistakes

- Omission of $\frac{1}{2}$ in equation for quadratic approximation
- $(x-a)$ is used instead of $(x-a)^{2}$ in the quadratic approximation
- Chain rule forgotten when taking derivatives
- Plug $f^{\prime}(x)$ instead of $f^{\prime}(a)$ into linear or quadratic approximation

References

"Linear Approximation." Wikipedia.org. 6 November 2012. Web. 3 June 2012. <http://en.wikipedia.org/wiki/Linear approximation>.

Stewart, James. "Calculus: Early Vectors." 1st ed. Pacific Grove: Brooks/Cole, 1999. Print.
"Taylor's Theorem." Wikipedia.org. 6 November 2012. Web. 5 November 2012. http://en.wikipedia.org/wiki/Taylor's_theorem.

