### DIFFERENTIALS: LINEAR AND QUADRATIC APPROXIMATION

By Kenny Abitbol, Sam Mote, and Evan Kirkland



#### Introduction of Linear Approximation

$$L(x) = f(a) + f'(a)(x - a)$$

- *a* : point whose tangent line as an approximation of the function
- x : point whose value is being approximated
- If f(x) is concave up after x = a, the approximation will be an underestimate, and if it is concave down, it will be an overestimate



#### **Definition of Linear Approximation**

"The equation of the tangent line to the curve y = f(x) at (a, f(a)) is

$$y = f(a) + f'(a)(x - a),$$

so...the tangent line at P(a, f(a)) [is] an approximation to the curve y = f(x) when x is near a.

$$L(x) = f(a) + f'(a)(x - a)$$

is called the **linear approximation** or **tangent line approximation** of f at a."

- Stewart, "Calculus: Early Vectors"

## Introduction of Quadratic Approximation

 $Q(x) = f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^{2}$ 

or

$$Q(x) = L(x) + (\frac{1}{2})f''(a)(x-a)^2$$

$$y = L(x)$$
Quadratic approximation of  $f(x) = cosx$ 

$$u = 0.$$

$$y = L(x)$$

$$y = L(x)$$

$$u = 0.$$

# Definition of Quadratic Approximation

The quadratic approximation also uses the point x = a to approximate nearby values, but uses a parabola instead of just a tangent line to do so.



#### History: Taylor's Theorem

Linear and Quadratic approximations are based off of Taylor's theorem of polynomials. The theorem is named after 18<sup>th</sup> century mathematician Brook Taylor who designed a general formula for approximating the values of functions after a small change of the x-value. The formula was first published in 1712. His theorem is:

$$f(x) \approx f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(k)}(a)}{k!}(x-a)^k$$

where **a** is a reference point, **x** is the nearby value being approximated, and **k** is the maximum amount of times the original function can be derived.



#### **History: Differentials**

- Began in 1680's
  - Bernouli brothers
  - Gottfried Wilhelm Leibniz
- Applied to geometry and mechanics



#### **Producing Along Standards**

A company requires that the bowling balls that it creates have a volume in the range of  $4170 - 4200cm^3$ . If the radii of the balls are produced to be 10 cm and have an error of .01 cm, will the company be able to produce along these standards?



## Error Calculation with Linear Approximation



### Error Calculation with Linear Approximation

Now using the formula  $\Delta V = \frac{dV}{dr} \Delta r$ 

$$\frac{dV}{dr} = 400\pi$$

 $\Delta r = 0.01$ 

 $\Delta V = 400\pi (.01) = 12.57 cm^3$ 

$$V(10) = \frac{4}{3}\pi 10^3 = 4188.79cm^3$$

#### Analysis

We found that the volume of the perfectly created ball would be  $4188.79cm^3$  with a deviation of  $\pm 12.57cm^3$ . This creates a range of  $4176.22 - 4201.26cm^3$ , which does not fit with the desired range of  $4170 - 4200cm^3$ . The company will not be able to produce along these standards.



#### Surface Area Errors

In the design of a waterpark fountain like the one shown below, the cost of paint is important. With the paint costing  $\frac{0.25}{inches^2}$ , what would the relative error in surface area be if the radius of the circle has an error of  $\pm .75$  inches? What would be the variation in price?



Take the inner radius to be  $\frac{R}{4}$ ,

the radius of the circle to be 37 inches,

and the height to be 2R.

### Modifying the Linear Approximation Formula

$$L(x) = f(a) + f'(a)(x - a) \to \Delta y = \frac{dy}{dx}\Delta x$$

Adding up the surface areas: Sphere:  $2\pi R^2$ 

Bottom of sphere:  $\pi R^2 - \pi (\frac{R}{4})^2$ 



Cylinder:  $\pi(\frac{R}{4})^2 + 2\pi \frac{R}{4} 2R$  (top of cylinder doesn't matter)

Surface Area =  $4\pi R^2$ 

Proposed Area = 
$$4\pi(37)^2$$
  
= 17,203.36 inches<sup>2</sup>

#### **Error in Surface Area**

Surface Area Error :  $\Delta R = .75$  inches

Now take the derivative of the surface area formula, with respect to the radius of the hemisphere.( $A(R) = 4\pi R^2$ )

$$\frac{dA}{dR} = 8\pi R,$$

#### **Error in Surface Area**

$$\Delta A_R = \frac{dA}{dR} \Delta R \rightarrow 8\pi(37)(.75) = 697.43 \ inches^2$$

$$error_{relative} = \frac{\Delta A}{A} = \frac{697.43}{17203.36} = \frac{0.0405}{0.0405}$$



#### Analysis

The small error in the radius of the sphere can cause a substantial change in cost.

The cost of painting the structure:  $Cost = Cost_0 \pm \Delta Cost$   $Cost_0 = (17203.36)(.25) = $4300.84$   $\Delta Cost = $174.36$  $Cost = $(4300.84 \pm 174.36)$ 

Percent Error of R: Percent Error of A:

$$\frac{.75}{37} \times 100 = 2.03\%$$
$$\frac{.697.43}{.17203.36} \times 100 = 4.05\%$$



The water level in an artificial pond, which has both a constant drainage, due to absorption and evaporation, and a periodically active source, over a given 24-hour period is given by the approximation

$$h(x) = 5\sin\left(\frac{x}{2}\right) + 25,$$

where *h* is given in ft. This equation was the result of taking measurement tests every 30 minutes. That leaves the depth at many other times indefinite, but assumable. Given that x = 0 is midnight, x = 1 is 1:00 A.M., and so on, what would the depth have been at 11:03 A.M.?

The first thing to do is identify given values.

 $\boldsymbol{\chi}$ 

$$h(x) = 5\sin\left(\frac{x}{2}\right) + 25, \quad a = 11 , \quad and$$
  
=  $11 + \left(\frac{3}{60}\right) \quad or \quad 11.05 .$ 

And we know that the linear and quadratic approximation formulas are

$$L(x) = h(a) + h'(a)(x - a) \text{ and}$$
$$Q(x) = L(x) + \frac{h''}{2}(x - a)^2$$

Now we plug in values and solve where we can. So if  $h(x) = 5\sin\left(\frac{x}{2}\right) + 25$ , then  $h'(x) = 2.5\cos\left(\frac{x}{2}\right)$ . Now :  $L(11.05) = h(11) + h'(11)(11.05 - 11) \rightarrow L(11.05) = 21.472 + (1.772)(.05) \rightarrow L(11.05) = 21.5606$ 

So according to the linear approximation, at 11:03, the water's depth was 21.5606 ft.

Now to find the depth of the water according to a quadratic approximation, we need h''(x). So if

$$h'(x) = 2.5\cos\left(\frac{x}{2}\right),$$

then

$$h''(x) = -1.25\sin\left(\frac{x}{2}\right).$$

Now:

$$Q(11.05) = L(11.05) + \frac{h''(11)}{2}(11.05 - 11)^2 \rightarrow$$
$$Q(11.05) = 21.5606 + \left(\frac{.882}{2}\right)(.05)^2 \rightarrow$$
$$Q(11.05) = 21.5617$$

So now according to the quadratic approximation, the depth of the water was 21.5617 ft.

#### **Oscillation with Differentials: Analysis**

When x = 11.05 is plugged into the original equation, the depth is 21.5620 ft. To calculate error for the Linear approximation it is

$$|h(11.05) - L(11.05)|$$
  
 $h(11.05)$ 

)

which is an error of 0.0065%. For the Quadratic approximation error it is

$$\frac{|h(11.05) - Q(11.05)|}{h(11.05)} ,$$

which is an error of .0014%. So while both approximations have very low error, the Quadratic approximation is even more accurate.



#### **Common Mistakes**

- Omission of  $\frac{1}{2}$  in equation for quadratic approximation
- (x a) is used instead of  $(x a)^2$  in the quadratic approximation
- Chain rule forgotten when taking derivatives
- Plug f'(x) instead of f'(a) into linear or quadratic approximation





#### References

"Linear Approximation." Wikipedia.org. 6 November 2012. Web. 3 June 2012. <<u>http://en.wikipedia.org/wiki/Linear\_approximation</u>>.

Stewart, James. "Calculus: Early Vectors." 1st ed. Pacific Grove: Brooks/Cole, 1999. Print.

"Taylor's Theorem." Wikipedia.org. 6 November 2012. Web. 5 November 2012. <<u>http://en.wikipedia.org/wiki/Taylor</u>'s\_theorem>.