Inverse Laplace transform of rational functions using Partial Fraction Decomposition

 $h(t)e^{\alpha t}\cos\beta t$ or

 $h(t)e^{\alpha t}\cos\beta t$ or $h(t)e^{\alpha t}\sin\beta t$,

 $h(t)e^{\alpha t}\cos\beta t$ or $h(t)e^{\alpha t}\sin\beta t$,

where h(t) is a polynomial, one needs on certain step to find the inverse Laplace transform of rational functions $\frac{P(s)}{Q(s)}$,

$h(t)e^{\alpha t}\cos\beta t$ or $h(t)e^{\alpha t}\sin\beta t$,

where h(t) is a polynomial, one needs on certain step to find the inverse Laplace transform of rational functions $\frac{P(s)}{Q(s)}$,

where P(s) and Q(s) are polynomials with deg $P(s) < \deg Q(s)$.

Inverse Laplace transform of rational functions using Partial Fraction Decomposition

Inverse Laplace transform of rational functions using Partial Fraction Decomposition

The latter can be done by means of the partial fraction decomposition that you studied in Calculus 2:

One factors the denominator Q(s) as much as possible, i.e. into linear (may be repeated) and quadratic (may be repeated) factors:

One factors the denominator Q(s) as much as possible, i.e. into linear (may be repeated) and quadratic (may be repeated) factors: each linear factor correspond to a real root of Q(s) and

One factors the denominator Q(s) as much as possible, i.e. into linear (may be repeated) and quadratic (may be repeated) factors:

each linear factor correspond to a real root of Q(s) and each quadratic factor correspond to a pair of complex conjugate roots of Q(s).

One factors the denominator Q(s) as much as possible, i.e. into linear (may be repeated) and quadratic (may be repeated) factors:

each linear factor correspond to a real root of Q(s) and each quadratic factor correspond to a pair of complex conjugate roots of Q(s).

Case 1 A non-repeated linear factor (s - a) of Q(s)

Case 1 A non-repeated linear factor (s - a) of Q(s) (corresponding to the root a of Q(s) of multiplicity 1)

Case 1 A non-repeated linear factor (s - a) of Q(s) (corresponding to the root a of Q(s) of multiplicity 1) gives a contribution of the form $\frac{A}{s-a}$.

Case 1 A non-repeated linear factor (s - a) of Q(s) (corresponding to the root a of Q(s) of multiplicity 1) gives a contribution of the form $\frac{A}{s-a}$. Then $\mathcal{L}^{-1}\left\{\frac{A}{s-a}\right\} = Ae^{at}$;

Case 1 A non-repeated linear factor (s - a) of Q(s) (corresponding to the root a of Q(s) of multiplicity 1) gives a contribution of the form $\frac{A}{s-a}$. Then $\mathcal{L}^{-1}\left\{\frac{A}{s-a}\right\} = Ae^{at}$;

Case 2 A repeated linear factor $(s - a)^m$ of Q(s)

Case 1 A non-repeated linear factor (s - a) of Q(s) (corresponding to the root a of Q(s) of multiplicity 1) gives a contribution of the form $\frac{A}{s-a}$. Then $\mathcal{L}^{-1}\left\{\frac{A}{s-a}\right\} = Ae^{at}$;

Case 2 A repeated linear factor $(s - a)^m$ of Q(s) (corresponding to the root a of Q(s) of multiplicity m)

Case 1 A non-repeated linear factor (s - a) of Q(s) (corresponding to the root a of Q(s) of multiplicity 1) gives a contribution of the form $\frac{A}{s-a}$. Then $\mathcal{L}^{-1}\left\{\frac{A}{s-a}\right\} = Ae^{at}$;

Case 2 A repeated linear factor $(s - a)^m$ of Q(s) (corresponding to the root a of Q(s) of multiplicity m) gives a contribution

which is a sum of terms of the form

Case 1 A non-repeated linear factor (s - a) of Q(s) (corresponding to the root a of Q(s) of multiplicity 1) gives a contribution of the form $\frac{A}{s-a}$. Then $\mathcal{L}^{-1}\left\{\frac{A}{s-a}\right\} = Ae^{at}$;

Case 2 A repeated linear factor $(s - a)^m$ of Q(s) (corresponding to the root a of Q(s) of multiplicity m) gives a contribution which is a sum of terms of the form $\frac{A_i}{(s - a)^i}$, $1 \le i \le m$.

Case 1 A non-repeated linear factor (s - a) of Q(s) (corresponding to the root a of Q(s) of multiplicity 1) gives a contribution of the form $\frac{A}{s-a}$. Then $\mathcal{L}^{-1}\left\{\frac{A}{s-a}\right\} = Ae^{at}$;

Case 2 A repeated linear factor $(s - a)^m$ of Q(s) (corresponding to the root a of Q(s) of multiplicity m) gives a contribution which is a sum of terms of the form $\frac{A_i}{(s - a)^i}$, $1 \le i \le m$. Then $\mathcal{L}^{-1}\left\{\frac{A_i}{(s - a)^i}\right\} = \frac{A_i}{(i - 1)!}t^{i-1}e^{at}$; Case 3 A non-repeated quadratic factor $(s - \alpha)^2 + \beta^2$ of Q(s)

Case 3 A non-repeated quadratic factor $(s - \alpha)^2 + \beta^2$ of Q(s)(corresponding to the pair of complex conjugate roots $\alpha \pm i\beta$ of multiplicity 1) Case 3 A non-repeated quadratic factor $(s - \alpha)^2 + \beta^2$ of Q(s)(corresponding to the pair of complex conjugate roots $\alpha \pm i\beta$ of multiplicity 1) gives a contribution of the form $\frac{Cs + D}{(s - \alpha)^2 + \beta^2}.$

It is more convenient here to represent it in the following way:

Case 3 A non-repeated quadratic factor $(s - \alpha)^2 + \beta^2$ of Q(s)(corresponding to the pair of complex conjugate roots $\alpha \pm i\beta$ of multiplicity 1) gives a contribution of the form $\frac{Cs + D}{(s - \alpha)^2 + \beta^2}$ It is more convenient here to represent it in the following way:

 $\frac{Cs+D}{(s-\alpha)^2+\beta^2}=\frac{A(s-\alpha)+B\beta}{(s-\alpha)^2+\beta^2}.$

Case 3 A non-repeated quadratic factor $(s - \alpha)^2 + \beta^2$ of Q(s)(corresponding to the pair of complex conjugate roots $\alpha \pm i\beta$ of multiplicity 1) gives a contribution of the form $\frac{Cs + D}{(s - \alpha)^2 + \beta^2}.$

> It is more convenient here to represent it in the following way: $\frac{Cs+D}{(s-\alpha)^2+\beta^2} = \frac{A(s-\alpha)+B\beta}{(s-\alpha)^2+\beta^2}.$ Then $\mathcal{L}^{-1}\left\{\frac{A(s-\alpha)+B\beta}{(s-\alpha)^2+\beta^2}\right\} = Ae^{\alpha t}\cos\beta t + Be^{\alpha t}\sin\beta t;$

Case 4 A repeated quadratic factor $((s - \alpha)^2 + \beta^2)^m$ of Q(s)

Case 4 A repeated quadratic factor $((s - \alpha)^2 + \beta^2)^m$ of Q(s)(corresponding to the pair of complex conjugate roots $\alpha \pm i\beta$ of multiplicity *m*) gives a contribution which is a sum of terms of the form

$$\frac{C_i s + D_i}{\left((s-\alpha)^2 + \beta^2\right)^i} = \frac{A_i(s-\alpha) + B_i\beta}{\left((s-\alpha)^2 + \beta^2\right)^i},$$

where $1 \leq i \leq m$.

Case 4 A repeated quadratic factor $((s - \alpha)^2 + \beta^2)^m$ of Q(s)(corresponding to the pair of complex conjugate roots $\alpha \pm i\beta$ of multiplicity *m*) gives a contribution which is a sum of terms of the form

$$\frac{C_i s + D_i}{\left((s - \alpha)^2 + \beta^2\right)^i} = \frac{A_i (s - \alpha) + B_i \beta}{\left((s - \alpha)^2 + \beta^2\right)^i},$$

where $1 \leq i \leq m$.

The calculation of the inverse Laplace transform in this case is more involved. It can be done as a combination of the property of the derivative of Laplace transform and the notion of *convolution* that will be discussed in section 6.6.