
Inverse Laplace transform of rational functions using
Partial Fraction Decomposition

Using the Laplace transform for solving linear non-homogeneous
differential equation with constant coefficients and the right-hand
side g(t) of the form

h(t)eαt cosβt or h(t)eαt sinβt,

where h(t) is a polynomial, one needs on certain step to find the

inverse Laplace transform of rational functions
P(s)

Q(s)
,

where P(s) and Q(s) are polynomials with degP(s) < degQ(s).
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Inverse Laplace transform of rational functions using
Partial Fraction Decomposition

The latter can be done by means of the partial fraction
decomposition that you studied in Calculus 2:

One factors the denominator Q(s) as much as possible, i.e. into
linear (may be repeated) and quadratic (may be repeated) factors:

each linear factor correspond to a real root of Q(s) and
each quadratic factor correspond to a pair of complex conjugate
roots of Q(s).
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Each factor in the decomposition of Q(s) gives a contribution of

certain type to the partial fraction decomposition of
P(s)

Q(s)
. Below

we list these contributions depending on the type of the factor and
identify the inverse Laplace transform of these contributions:

Case 1 A non-repeated linear factor (s − a) of Q(s) (corresponding to
the root a of Q(s) of multiplicity 1) gives a contribution of

the form
A

s − a
. Then L−1

{
A

s − a

}
= Aeat ;

Case 2 A repeated linear factor (s − a)m of Q(s) (corresponding to
the root a of Q(s) of multiplicity m) gives a contribution

which is a sum of terms of the form
Ai

(s − a)i
, 1 ≤ i ≤ m.

Then L−1

{
Ai

(s − a)i

}
=

Ai

(i − 1)!
t i−1eat ;
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Case 3 A non-repeated quadratic factor (s − α)2 + β2 of Q(s)

(corresponding to the pair of complex conjugate roots α± iβ
of multiplicity 1) gives a contribution of the form

Cs + D

(s − α)2 + β2
.

It is more convenient here to represent it in the following way:
Cs + D

(s − α)2 + β2
=

A(s − α) + Bβ

(s − α)2 + β2
. Then

L−1

{
A(s − α) + Bβ

(s − α)2 + β2

}
= Aeαt cosβt + Beαt sinβt;
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Case 4 A repeated quadratic factor
(
(s − α)2 + β2

)m
of Q(s)

(corresponding to the pair of complex conjugate roots α± iβ
of multiplicity m) gives a contribution which is a sum of terms
of the form

Ci s + Di(
(s − α)2 + β2

)i =
Ai (s − α) + Biβ(
(s − α)2 + β2

)i ,
where 1 ≤ i ≤ m.

The calculation of the inverse Laplace transform in this case is
more involved. It can be done as a combination of the
property of the derivative of Laplace transform and the notion
of convolution that will be discussed in section 6.6.
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