10.9: Applications of Taylor Polynomials

Recall that the N th degree Taylor Polynomial is defined by

$$
\begin{array}{rc}
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=\underbrace{\sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!}(x-a)^{n}}_{T_{N}(x)}+\underbrace{\sum_{n=N+1}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}}_{\begin{array}{c}
R_{N}(x) \\
\text { Remainder }
\end{array}}
\end{array}
$$

Taylor polynomial
partial sum

EXAMPLE 1. For $f(x)=\cos x$ find $T_{N}(x)$ for $N=0,1,2, \ldots, 8$ at $x=0$. Find n-th degree Taylor polynomials $T_{0}, T_{1}, \ldots, T_{8}$

We know

$$
\begin{aligned}
& T_{0}(x)=1 \\
& T_{1}(x)=1 \\
& T_{2}(x)=1-\frac{x^{2}}{2} \\
& T_{3}(x)=1-\frac{x^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& T_{4}(x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{24} \\
& T_{5}(x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{24} \\
& T_{6}(x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720} \\
& T_{7}(x)=T_{6}(x) \\
& T_{8}(x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+\frac{x^{8}}{40320}
\end{aligned}
$$

REMARK 2. As the degree of the Taylor polynomial increases, it starts to look more and more like the function itself (and thus, it approximates the function better).

Example 1'. Find Taylor polynomials $T_{N}, N=0,1,2,3,4$ for e^{x} at $x=0$.

$$
\begin{aligned}
& e^{x}=\underbrace{1}_{T_{0}(x)}+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots \\
& T_{0}(x)=1 \\
& T_{1}(x)=1+x \\
& T_{2}(x)=1+\frac{x^{2}}{2} \\
& T_{3}(x)=1 x+\frac{x^{2}}{2}+\frac{x^{3}}{6} \\
& T_{4}(x)=1 x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}
\end{aligned}
$$

REMARK 3. The first degree Taylor polynomial

$$
T_{1}(x)=f(a)+f^{\prime}(a)(x-a)
$$

is the same as linear approximation of f at $x=a$.
In general, $f(x)$ is the sum of its Taylor series if $T_{N}(x) \rightarrow f(x)$ as $n \rightarrow \infty$. So, $T_{N}(x)$ can be used as an approximation:

$$
f(x) \approx T_{N}(x)
$$

How to estimate the Remainder $\left|R_{N}(x)\right|=\left|f(x)-T_{N}(x)\right|$? on interval I

- Use graph of $R_{N}(x) \quad \max \left|R_{N}(\boldsymbol{x})\right|$
- If the series happens to be an alternating series, you can use the Alternating Series Theorem.
- In all cases you can use Taylor's Inequality:
- In all cases you can use Taylor's Inequality:
where

$$
M=\max ^{(N+1)}\left|f^{(N+1)}(x)\right| \leq M \text { for all } x \text { in interval c }
$$

M is absolute max of $\left|f^{(N+1)}(x)\right|$ on the given interval
(a) Approximate $f(x)$ by a Taylor polynomial of degree 3 at $a=0$.

We know

$$
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\ldots \frac{x^{n}}{n!}+\ldots
$$

and then

$$
\begin{aligned}
& \text { then } e^{x^{2}}=1+x^{2}+\frac{\left(x^{2}\right)^{2}}{2}+\frac{\left(x^{2}\right)^{3}}{6}+\frac{\left(x^{2}\right)^{4}}{24}+\ldots+\frac{\left(x^{2}\right)^{n}}{n!}+\ldots \\
& e^{x^{2}}=1+x^{2}+\frac{x^{4}}{2}+\frac{x^{6}}{6}+\frac{x^{8}}{24}+\ldots+\frac{x^{2 n}}{n!}+\ldots \\
& e^{x^{2}}=1+0 \cdot x+x^{2}+0 \cdot x^{3}+\frac{x^{4}}{2}+\ldots \\
& T_{3}(x)
\end{aligned}
$$

$$
T_{3}(x)=1+x^{2}
$$

Note that $T_{2}(x)=1+x^{2}$
and also $e^{x^{2}} \approx 1+x^{2}$
(b) How accurate is this approximation when $0 \leq x \leq 0.1$

Find $\max _{0 \leqslant x \leqslant 0.1}\left|R_{3}(x)\right|$ absolute extremum problem

Method 1

$$
\begin{aligned}
& 0 \leqslant x \leqslant 0.1 \\
& R_{3}(x)=f(x)-T_{3}(x)=l^{x^{2}}-\left(1+x^{2}\right)
\end{aligned}
$$

$$
R_{3}(x)=e^{x^{2}}-1-x^{2}
$$

To find absolute extremum find critical numbers on $[0,0.1]$ and plugin + end points

$$
\begin{aligned}
& R_{3}^{\prime}(x)=2 x e^{x^{2}}-2 x=2 x\left(e^{x^{2}}-1\right)=0 \\
& \ell_{x=0} \quad e^{x^{2}}-1=0 \\
& e^{x^{2}}=1 \\
& \text { Note that } x=0 \text { is in }[0,0.1] x
\end{aligned}
$$

(crit number
end

$$
R_{3}(0)=e^{0^{2}}-1-0^{2}=0
$$

another end point $\quad R_{3}(0.1)=e^{0.1^{2}}-1-0.1^{2} \approx 5 \cdot 10^{-9}$

$$
\begin{aligned}
\max _{[0,0.1]}\left|R_{3}(x)\right| & \approx 5 \cdot 10^{-9} \\
& \| \\
\left|R_{3}(x)\right| & \leqslant\left(5 \cdot 10^{-9} \text { for all } 0 \leqslant x \leqslant 0.1\right.
\end{aligned}
$$

Method 2 Use Taylor Inequality
given interval
(b) How accurate is this approximation when $0 \leq x \leq 0.1$

Method 2: Use Taylor Inequality: $\left|R_{N}(x)\right| \leqslant \frac{M}{(N+1)!}|x-a|^{N+1}$
where $M=\max \left|f^{(N+1)}(x)\right|$
In our case we have $a=0, \quad f(x)=l^{x^{2}}, N=3$

$$
\left|R_{3}(x)\right| \leqslant \frac{M}{(3+1)!}|x-0|^{3+1}=\frac{M}{4!}|x|^{4}=\frac{M}{24} \cdot \max _{0 \leq x \leq 0.1}|x|^{4}=\frac{M}{24} \cdot 0.1^{4}
$$

where
$M=\max _{0 \leqslant x \leqslant 0.1}\left|f^{(4)}(x)\right|$ It remains to find M (solve absolute extremum problem for that. Review Chapter 5 if necessary).

$$
\begin{aligned}
f(x) & =e^{x^{2}} \\
f^{\prime}(x) & =2 x e^{x^{2}} \\
f^{\prime \prime}(x) & =2\left[e^{x^{2}}+2 x^{2} e^{x^{2}}\right] \\
f^{\prime \prime \prime}(x) & =2[2 x e^{x^{2}}+\underbrace{4 x e^{x^{2}}}+4 x^{3} e^{x^{2}}]=2\left[6 x e^{x^{2}}+4 x^{3} e^{x^{2}}\right] \\
f^{(4)}(x) & =2\left[6 e^{x^{2}}+12 x^{2} e^{x^{2}}+12 x^{2} e^{x^{2}}+8 x^{4} e^{x^{2}}\right]= \\
& =2 e^{x^{2}}\left[6+24 x^{2}+8 x^{4}\right]=h(x)
\end{aligned}
$$

Find abs. max and min of $h(x)$ on $[0,0.1]$

$$
\begin{aligned}
& \text { Find abs. } \max \text { and min of } h(x) \text { oh } \\
& h^{\prime}(x)=4 x e^{x^{2}}\left[6+24 x^{2}+8 x^{4}\right]+2 e^{x^{2}}\left[48 x+32 x^{3}\right]>0 \\
&
\end{aligned}
$$

$\Rightarrow h(x)$ is monotonically increasing on $[0,0.1] \Rightarrow$
\Rightarrow cubsolute extemum is attained at end points

$$
\begin{aligned}
& h(0)=2 \cdot e^{0} \cdot 6=12 \\
& h(0.1)=2 e^{0.01}\left(6+24 \cdot 0.1^{2}+8 \cdot 0.1^{4}\right) \approx 12.607 \\
& M \approx \max \{|h(0)|,|h(0.1)|\} \approx 12.607
\end{aligned}
$$

$$
\begin{aligned}
& M=\max \{101, \\
& \text { Finally, } \\
& \left|R_{3}(x)\right| \leqslant \frac{\left.M \cdot\left(0_{2}\right)\right)^{4}}{24} \approx \frac{12.607 \cdot 10^{-4}}{24} \approx 5.3 \cdot 16
\end{aligned}
$$

Finally,

Taylor series $f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots$

$$
T_{2}(x)=\text { and degree } \text { Taylor polynomial }
$$

$$
\begin{aligned}
& \text { Th our case } \\
& \begin{array}{ll}
a=\frac{\pi}{4}, & f(x)=\cos x \Rightarrow f^{\prime}(x)=-\sin x \Rightarrow f^{\prime \prime}(x)=-\cos x \\
f\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}, & f^{\prime}\left(\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2},
\end{array} f^{\prime \prime}\left(\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}
\end{aligned}
$$

In our case for $N=2$:

$$
\begin{aligned}
& \text { for } N=2: \\
& \left|R_{2}(x)\right| \leqslant \frac{M}{(2+1)!}|x-a|^{2+1}=\frac{M}{6}\left|x-\frac{\pi}{4}\right|^{3} \leqslant \frac{M}{6} \cdot\left(\frac{5 \pi}{12}\right)^{3} \\
& \frac{\pi}{6} \leqslant x \leqslant \frac{2 \pi}{3}
\end{aligned}
$$

$$
\frac{\pi}{6} \leq x \leq \frac{2 \pi}{3}
$$

where

$$
\begin{aligned}
& M=\max \left|f^{(3)}(x)\right| \\
& \frac{\pi}{6} \leq x \leq \frac{2 \pi}{3}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\pi}{6} & \leq x \leqslant \frac{3}{3} \\
2 / \frac{\pi}{6}-\frac{\pi}{4} & \leq x-\frac{\pi}{4} \leqslant \frac{2 \pi}{3}-\frac{\pi}{4}
\end{aligned}
$$

Determine M :

$$
-\frac{\pi}{12} \leqslant x-\frac{\pi}{4} \leqslant \frac{5 \pi}{12}
$$

$$
f^{(3)}(x)=\left(f^{\prime \prime}(x)\right)^{\prime}=(-\cos x)^{\prime}=\sin x=h(x) \quad\left|x-\frac{\pi}{4}\right| \leqslant \frac{5 \pi}{12}
$$

Find abs. extremum of $h(x)=\sin x$ on $\left[\frac{\pi}{6}, \frac{2 \pi}{3}\right]$
use graph

$$
\begin{aligned}
& \max h(x)=h\left(\frac{\pi}{2}\right)=\sin \frac{\pi}{2}=1, \quad h(x)=|h(x)| \\
& \frac{\pi}{6} \leq x \leq \frac{2 \pi}{3} \\
& \Rightarrow M=\max _{x<2 \pi}|h(x)|=1 \quad \text { finally, } \\
& \left|R_{2}(x)\right| \leqslant \frac{1}{6}\left(\frac{5 \pi}{12}\right)^{3} \approx 1
\end{aligned}
$$

$$
\frac{\pi}{6} \leq x \leq \frac{2 \pi}{3}
$$ $\frac{\pi}{6} \leqslant x \leqslant \frac{2 \pi}{3} \quad\left|R_{2}(x)\right| \leqslant \frac{1}{6}\left(\frac{5 \pi}{12}\right)^{3} \approx 0.373822$

We already know (see Sections $10.7,10.5$) that

$$
\begin{aligned}
& f(x)=\ln (1+x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1} \\
& \ln 1.2=f(0.2)=f\left(\frac{1}{5}\right)=\underbrace{\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{5^{n+1}(n+1)}}_{\text {Alternating series }}
\end{aligned}
$$

Find n such that $\left|R_{n}\right| \leqslant 0,001=\frac{1}{1000}$
Note that $\left|R_{n}\right| \leqslant b_{n+1}=\frac{1}{5^{n+2}(n+2)} \leqslant \frac{1}{1000}$
However it is difficult to get general solution for the last inequality.

$$
\begin{aligned}
& \text { Thus, } \\
& \quad \ln 1.2=\frac{1}{50}-\frac{1}{3 \cdot 125}+\frac{1}{5^{4} \cdot 4}-\frac{1}{5^{5} \cdot 5}+\ldots \\
& n=0 \quad\left|R_{0}\right| \leq b_{1}=\frac{1}{50}>0.001 \\
& n=1 \quad\left|R_{1}\right| \leq b_{2}=\frac{1}{3 \cdot 125}>0.001=\frac{1}{1000} \\
& n=2 \quad\left|R_{2}\right| \leq b_{3}=\frac{1}{5^{4} \cdot 4}=\frac{1}{625.4}<\frac{1}{1000}=0.001
\end{aligned}
$$

We need 3 terms of Maclaurin series for the desired accuracy:

$$
\ln (1.2) \approx \frac{1}{5}-\frac{1}{50}+\frac{1}{3.125} \approx 0.18266
$$

Note that using calculator we get

$$
\ln 1.2 \approx 0.182321
$$

