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11.4: Equations of lines and planes

Lines

Lines determined by a point and a vector

Consider line L that passes through the point Fy(zq, 3o, 20) and is parallel to the nonzero vector

v ={(a,b,c). \
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Parametric equations of the line: o "j

Tr = Iy



EXAMPLE 1. Find parametric equations of the line

1(..7"3.. <o, b,c>
(a) passing through the point (3,—4,1) and parallel to v = (7,0,—1)
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(b) passing through the origin and parallel to v = (5,5,5)
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EXAMPLE 2. Consider the line L that passes through the points A(1,1,1) and B(2,3,—2). Find
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points at that L intersects the yz-plane.
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Symmetric equations of the line: If abc # 0 then
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If, for example, a = 0 then the symmetric equations have the form:
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EXAMPLE 3. Find symmetic equations of lines from Example 1.
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Vector equation of the line:
r(t) = (zo. %0, 20) +t{a,b,c)

where Fy(zq, o, 20) is a given point on the line and v = (a, b, ¢) is some vector which is parallel

to the line, ¢ is a parameter, —oo < t < o0.
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EXAMPLE 4. Find vector equation of the line that passes through the points P(1,1,—4) and

Q(0,3,—4).
V= ﬁ = {0~ \,3-—!,-%-(-'13) =<=1,2,07




EXAMPLE 5. Determine whether the lines
y+2 z—-4
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are parallel, skew, or intersecting. ?a(0‘3 - 3)
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Line segments

How to find parametric equation of a line segment:

1. Find parametric equation for the entire line;

2. restrict the parameter appropriately so that only the desired segment is generated.

EXAMPLE 6. Find parametric equations describing the line segment joining the points M(1,2,3)
and N(3,2,1).

V= MV = (31, 22,1237 540,720
Li we Yovoush M 2N
X = | + 2+ x=1%Yak Line
W~ 2 +o+ y- 2 Segmé’“‘t
z= 5 v ()t 3 at N//‘/
" P<§)1)’m 0<t £/
MP = 0¢t<a



Planes

Planes parallel to the coordinate planes:
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Planes determined by a point and a normal vector

A plane in R? is uniquely determined by a point Ppy(zo, yo, 20) in the plane and a vector n = (a, b, ¢)
that is orthogonal to the plane. This vector is called a normal vector.

Assume that P(z,y, z) is any point in the plane. Let ro and r be the position vectors for Fy

and P respectively. —_
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Vector equation of the plane: n-:(r—rg) = = n-r=mn-roy.

Oy bycye <X Xy Y-Ye,2- 2e) =0

a(X—Xeo) + b(¥-2)+c(2-2)=0

Scalar equation of plane:

L a(z — o) + b(y — yo) + ¢(z — 20) = 0. \

GX-aQXe# bYy-bYo+ €2 ~C22=0
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Often this will be written as a linear equation in =, y, z,

L a;r-—f—by—i—cz:d—}

where d = axq + byo + c2o.



EXAMPLE 7. Determine the equation of the plane through the point (1,2,1) and orthogonal to
vector (2,3,4). Find the intercepts and sketch the plane. (KeyYoy =)
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EXAMPLE 8. Determine the equation of the plane through the points A(1,1,1), B(0,1,0) and
(1,2,3).
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Two planes are parallel if their normal vectors are parallel. ﬁ
Two planes are orthogonal if their normal vectors are orthogonal. m

If two planes are not parallel, then they intersect in a straight line and the angle between the
two planes is defined as thelacute’angle between their normal vectors.

EXAMPLE 9. Given four planes:
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P 2z +/§y + 7 1 = 0 n‘<2.3,'7

+
ig: —24:.," - 6y — iz + ;; = B'RL(*4“G|'1>
3! T - 4z + = YR
A o,-Y>
Py —2x+3y+z+11:0.5<7”q

n% <" A \ 3) 9
Determine whether the given pairs of the planes are parallel, orthogonal, or neither. Find the

angle between the planes.
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EXAMPLE 10. Find an equation of the line given as intersection of two planes:

r -y + 3 =00
r + y + 4z QP&

Find a Poin*Yon the bne L= P\GP:_
xX=Y =0 =\:—_—.._y'.‘
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Qe L -

Find a direchon \Iedﬂ;\(dm
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12



13



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13

